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Special Boundary Integral 
Equations for Potential Problems 
in Regions With Circular Holes 
An infinite system of special boundary integral equations is derived for the solution 
of Laplace's equation in a general two-dimensional region with circular holes. The 
solution is shown to converge when the number of holes is finite and no two holes 
are touching. In special cases, these equations are shown to yield the same results as 
two more restricted methods, which are based on different approaches. 

Introduction 

In a recent paper, Barone and Caulk [1] proposed a new 
boundary integral method for solving potential problems in a 
general two-dimensional region with circular holes. Boundary 
quantities were expanded in circular harmonics on the holes 
and special boundary integral equations were introduced to 
determine the unknown coefficients. The outer boundary was 
treated in a conventional manner and, in principle, all in
tegration on the holes was to be done explicitly. Approximate 
equations, retaining only the first harmonic on the hole 
boundary, have already been applied successfully in a number 
of problems [2-4]. However, because the integrals involving 
higher harmonics on the holes had not then been evaluated, 
the explicit set of general equations was not available. In this 
paper we complete the system by explicitly evaluating all the 
integrals on the holes and prove that the solution always 
converges as long as the number of holes is finite and no two 
holes are touching. 

It turns out that the general equations proposed here 
contain those of Craggs [5] as a special case. They also give 
results equivalent to another restricted method due to 
Howland [6] for two different problems involving an infinite 
row of identical holes in an unbounded region. Since Craggs' 
method is also applicable to one of these problems, both 
Cragg's and Howland's methods give equivalent results for at 
least one problem where they both apply. This observation 
appears to be new. 

Integral Equations 

Consider a two-dimensional region R containing N circular 
holes centered at points J™ (a = 1, 2, . . . , N). Let aa denote 
its radius of hole a, dCa its boundary, and dR the outer 
boundary of the region. Let 0 be a regular harmonic function 
in R and let dcf>/dn denote its outward normal derivative on 
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the boundary. Now let <j> and its normal derivative on dCa be 
represented by the finite sums 

M" 

<£ = <£o + D Wmsin md" + 4%mcos m8a), 

d<j> 

Yn = Qo+ E te?,Bsin/Hfl'» + 02ncos/n0«), 

(1) 

(2) 
m = l 

where 0J, <t>l„, q§, ql„ («= 1, 2, . . . , N; X= 1, 2; m = 1, 2, 
. . . , Ma) are constants and 8a is the polar angle centered at 
£", measured relative to the *,-axis. When (1) and (2) are used 
to explicitly evaluate the integrals on dCa, the usual boundary 
integral equation for this region becomes [1] 

^ )+L(*S-*S)*^?J f l«*pogr» 
i M" 

- r E b'S (*i« + — 9fm ) sin mr 2 „,=1 LA m / 

+ (</>?,„ + ^ <7?,„)cos mr]} =0 , 

where 

and 

g=- — l o g l x - y l , ba=aa/ra, 

ra=\y-t"\, * " = 0a(y), 

<My)whenye(/?, dCa] 

G(y) = 

(3) 

(4) 

(5) 

</>(y) wheny e dR. 

Integral equations for the coefficients in (1) and (2) are 
obtained by introducing the special kernel functions 
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sg(x) = g(x,f»), gt = 
a'ffsm md11 

2 i r l x - ^ l ' " ' 6 i m 2TT Ix- f 3 I'" ' 

((3=1,2, N;m=l,2,. . . ,M0) (6) 

into Green's second identity for the potential </>. Since the 
singularities of the kernels (6) occur outside the region, these 
equations reduce to [1, 2] 

£ aaq§\og raB 
- - i v-

'-& 

Z > I & ( < & + - ? ? , „ ) s in/nV^ 
m = 1 L v m ' 

(<t>l„ + J 9g») cos mr0]} = 0, (7) 

o=l 

+ 

L(*^-*£)*+i(**—0 
+ ( - ! ) * - ' 2 > § „ U,g?sin **<* 

— i ^ a=l 

- 2 L *3> ( OT ) [ ( m *r« + ««??,„) cos(w + k)^ 

- (m^m + aaqi^ sin(m + k)r0]} = 0, (8) 

U^-isWK'*-'*) 
+ ( - l ) * _ 1 X > U «„<7o"cos A : ^ 

— i *•-< X = 1 

I ^ //M+A--1 
E *& ( m ) [ ( w < ^ + fl«9f«) sin(w + *)^» 

2 m t . 

+ (m^,„ + a„92
am) cos(/n + Wafi]} =0, (9) 

(0=1,2 TV; * = l , 2 , . . . , A f ) 

where 

bae=aa/ra9, raB = ! {» -«" I, ^ = 0»(^) . (10) 

The explicit results for £ > 1 in (8) and (9) are new. Details of 
the necessary integration are recorded in the appendix. 

Now pass to the limit Ma — oo and consider the infinite 
system of equations (3) and (7)-(9) for the infinite set of 
coefficients in either (1) or (2). Although the proof is 
somewhat tedious, it is not difficult to show from the theory 
of infinite determinants that the solution converges (when 7v*is 
finite) if the series 

(11) 

» ~ ym+k-lN " / \ 

i, _ t n ^ ff I ' !, — I x ' 

h* \r„B-aJ 
= aa/(raa-aa-a(i) (12) 

as long as raB>aa+aB. Hence, the solution converges as long 
as no two holes are touching. Of course, these equations 
would be of little value unless reasonable accuracy could be 
achieved for relatively small values of Ma. In fact, they give 
exceptionally accurate results with just Ma = 1 in several 
practical examples [2-4]. 

For the special case when all the holes have colinear centers 
and a constant boundary potential, equations (7)-(9) reduce 
to equations proposed by Craggs [5] and Craggs and Tranter 
[7] for calculating the capacity of systems of cylindrical 
conductors. Although the method in [5] and [7] can be 
generalized in some aspects, it is always restricted to circular 
or unbounded regions. Not only does the present approach 
place no restrictions on the outer boundary, but either 
numerical solutions are possible using standard quadrature 
methods for boundary integral equations. 

A Single Hole in a Strip 

To establish correspondence with Howland's method [6], 
we consider the example of infinite strip with a single hole in 
its center. Let d be the width of the strip and a the radius of 
the hole. The boundary of the hole has a constant potential <j>0 

and the potential on both edges of the strip is taken to be zero. 
First consider an infinite region with a row of 27V identical 

holes whose centers are a distance d apart and let the 
boundary potential on these holes be alternately ±<f>0. Then 
the solution on each hole approaches that in the strip (apart 
from sign) as /V— oo. Let the holes be indexed by a superscript 
n, which takes all integer values including zero, and let 

* i = 0 , &=nd. (13) 

Then from symmetry 

*S = ( - D " * o . <78 = (-l)"<7o> 

q'i(2k+\) -Q'lk — 0. Qi(2k)-(~^)"t]n2k)> (k—\,2,...). 

(14) 

Now let M" = 2K and identify /3 with n = 0 so that the only 
nontrivial equations in (7)-(9) become 

1 A / o \ 2m a 
<j>0+aq0\og(-ira/2d)- - ^ 1 - 1 n2m(- 1)'" — q2(lm) =0, 

(15) m=i 

(-DV2(2*)+4Q ft>*«<7o 

£ , /2m+2k-l\ /n\2m + 2k 
+ 2 £.( 2m ) \ j ) /*2m + 2 * ( - l)"'ff02(2,») = ° . 

where 

(Ar=l,2, . . .K) 

^ k - Ld „2k 

converges. Now 

and we have used the fact that 
co 

log a+ 2 D ( - l ) " log nd=\og(Tra/2d). 

(16) 

(17) 

(18) 
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Table 1 
strip 

aid 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 

Comparison 

Knight [8] 

0.3931 
0.5403 
0.6921 
0.8653 
1.0761 
1.3498 
1.7369 
2.3656 

of three results for a 

4>o/(a<7o) 
equation (19) 

0.3931 
0.5403 
0.6921 
0.8653 
1.0761 
1.3291 
1.7360 
2.3575 

single hole in a 

Balcerzak [9] 

0.3931 
0.5403 
0.6918 
0.8637 
1.0698 
1.3497 
1.6716 
2.1519 

In the limit if—oo (15) and (16) become identical to the 
equations derived by Knight [8] using the method of super
posed singular solutions due to Howland [6], Knight solves 
the infinite system for gQ by successive approximations and 
obtains results that are accurate to five significant figures. It 
is interesting to compare these results with the finite system 
(15) and (16) when K = 1. In this case, the latter equations 
have the solution 

<f>a/(aq0) = \og (2d lira)-

2 / « r \ 
9 \2d) 

14 / r a / \ ' 
15 \2d) 

(19) 

This solution is compared to Knight's results in Table 1. Even 
for aid - 0.4, the accuracy of the approximation (19) is 
remarkable. 

Balcerzak and Raynor [9] solved the same problem using an 
approximate conformal mapping technique. Their result, 
which is equivalent to the solution of (15) when K = 0, is 
given by just the first term of (19). This approximation is also 
included in Table 1 for comparison. 

Howland [6] used the same method to derive an infinite 
system of equations for potential flow around an infinite row 
of cylinders parallel to a uniform stream. The details will not 
be given, but it is possible to show that equations (3) and 
(7)-(9) reduce to an equivalent system in this case as well. 
Since Howland's method is not a general one, its 
correspondence with the present approach can only be 
considered on a case-by-case basis. But since (3) and (7)-(9) 
reduce to both Craggs' and Howland's results in special cases, 
it is possible that the latter methods may always yield 
equivalent results in problems where they both apply. 
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Fig. 1 Geometry and notation 

A P P E N D I X 

In this appendix we evaluate the integrals 

using (1), (2), and (6). Until now, this has been done only for 
k= \. 

We first note the following geometric relationships from 
Fig. 1: 

r^sin 0 = aasin 4>, r^cos 0 = r a / 3 -a a cos <£. 

Now consider the integrals 

\I'm=ln b0 s i n "0 s i n m<$> d(t>, 

042) 

(.43) 

044) 2I"m=l0 b"p cos nd cos m<t> d<t>, 

and expand sin nd and cos nd in the form 

sin nd=sin(n- 1)0 cos 0 + cos(«- 1)0 sin 0, 045) 

cos nd=cos(n- 1)0 cos 0 - s i n ( « - 1)0 sin 0. (AG) 

Express sin 6 and cos 0 in terms of </> from {A2) and integrate 
by parts in (A4), using 

di% d 6 r<*» /> 1 

— = cos 0 - 1 , -rr=nafsrS) 

to obtain the recursive relations 

\Im — bpa ji/m
- ' + ( ^ J T J lKi~ ' J . 

2sin <j>, 047) 

048) 

2/r„=v[2^r' + ( ^ T ) 1 / r 1 ] , («>i). (49) 
For n = 1, we have from standard integration formulas 

iJl, = 2/A, = **ifa*3s. 2ll = 2irbpa, (AW) 
and so 

rn _ r„ _rn _ . „ un, ("! + « ~ ! ) ( « + « ~ 2 ) . . . ( ff l+l) 
*m — I'm —'m ~ VDBaO \ l m 1* m -* m 0aual3 ' 

f tn + n-1 ( m-rri — L\ 
m )b"M (m,n>l), (AU) 

(All) 
m 

I'i=2irb"0a. 

Next consider 

i^,=l„*62/-li-
1sin[(/i + l)fl+*]sin mcj> d<j>, 

0413) 
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2j«n = fj bfrp ' cos[(« + 1)0 + </>]sin m<j> d<f>, 

and note from (A3) that 

aasin[(K+l)0 + <M = ra(3sin(rt + l)0-/-,3Cos nd, 

aacos[(n + 1)0 + <t>] = r.a0cos(n + 1)0- r^sin nO. 

From (-44) and (A13)-(A15), it follows that 

I Offa 'm 'ml ~ 

where we have also used {A 8), (A 9), and (A 11). 
Now from (4), (6), and L42) 

(-D* 
2TT 

(-414) 

(-415) 

,/;;, = 2J%=J% = j - ( W -/;;,) = x- (%)*, (-416) 

&£(sin Ar0 cos ^°"» + cos £0 sin / t i /^), (-417) 
2ir 

k 

ik = -^—• b^cos kd cos Art/^*3-sin kd sin fr^), (/118) 

and by a straightforward calculation, one can show that for 
\edCa 

M L = JLbtrg lsin.[(k+DO*-0«] 
dn 2w 

= ( - l ) * + 1 — bk
0r^ [sin k^cos[(k+l)6+<t>] 

2ir 

+ cos A:^sin[(/f+1)0 +(/>]), (-419) 

3« 27T 
= ^^/• / 3-1cos[(Ar+1)0^-0"] 

k 

2K' 
•(-l)k+l —blrg1 [cos ktallcos[(k+l)d+<i>) 

- s i n ^aflsm[(k+ l)0 + <£]). (-420) 

Finally, by combining (-411), (A 12), (A16)-(A20), (1), (2), 
and using symmetry we obtain the desired results (a ^(3): 

1 ^ /M + fc-Kr/ x 
- } L * 3 > ( m ) ("»*"».+«•»</?») cos(/n + W * ' 

- (ifi02„ +«„??,„) sin(#H + W * ] ] , (-421) 

j a c w ( * ^ - ^ ^ ) * = (-l)*-'^a[fla^cosA:^ 

+ 2 L b'Sp\ m )[ {mtfn: + aaQf,„) sin(W + W* 

+ (m4>l„ + « a ^ , „ ) cos(w + k)iali]] • (-422) 
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A Consistent Theory for Elastic 
Deformations With Small Strains 
A consistent theory is developed for linear elastic behavior in which the strains are 
small but in which no restriction is placed on the magnitudes of the displacements or 
the rotations of elements of the body. The theory reduces to the classical theory for 
infinitesimal deformations when the rotations are small. Pure torsion of a long 
cylinder and the bending of a beam by a terminal load are treated in order to 
illustrate the application of the theory. The bending solution agrees with the St. 
Venant flexure solution when the deflections are small and with the theory of the 
elastica when the deflections are large. 

1 Introduction 
The classical infinitesimal theory of elasticity treats 

deformations of a body composed of a linear elastic material 
in which the strains are small and the relative rotations of 
parts of the body are also small. For slender bodies, such as 
thin rods, the rotation of one part of the body relative to 
another need not be small even though the strains remain 
small. In 1859 Kirchhoff (see Love [1]) provided a theory for 
the bending and twisting of thin elastic rods and wires in 
which the relative displacements and rotations were not small. 
Love described Kirchhoff's approach as being largely 
kinematical and not free from difficulty, and gave an 
alternative description (pp. 389-393) of the nature of the 
strain in a bent and twisted rod in order to relate the moments 
applied to a section of a rod to the curvature and twist of the 
rod. As Love points out (p. 24), Kirchhoff's theory has been 
applied to problems such as the elastica, to the deflection of 
spiral springs, and to various problems of elastic stability, and 
the success of the theory is without question. Nevertheless, 
comments still appear in the literature (see [2], for example) to 
the effect that there are inconsistencies in "elementary" 
approaches such as Kirchhoff's and much effort has been 
spent on axiomatic approaches that claim to be more rational 
and therefore more correct. An analogous situation exists 
with regard to the theory of thin elastic plates and shells. 

There is need, therefore, for a consistent theory for linear 
elastic behavior in which the strains are small enough that 
second-order terms in the stress-strain relation can be 
neglected, as in the infinitesimal theory, but in which no 
restriction is placed on the displacements or rotations of 
elements of the body. Section 2 uses a Lagrangian approach in 
which the Cartesian coordinates Xj of particles in the reference 
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state are used as independent variables. Strains eik are defined 
for deformations with possibly large displacements and 
rotations which reduce to the usual infinitesimal strains when 
the rotations and strains are small. For deformations with 
small strains, the magnitudes of eik are assumed to be of the 
order of a dimensionless parameter e which is small enough 
(say around 10~3) so that second-order terms in e can be 
neglected in the calculation of eik. The first and second 
derivatives of eik are assumed to be 0(e) la and 0(e) /a1, where 
a is a reference length involved in the description of the body 
and the loading causing the deformation. To 0(e), for com
patibility eik satisfy the compatibility equations of the in
finitesimal theory, and locally, that is in a region of diameter 
0(a), virtual displacements v, exist such that the tensor eik is 
the symmetric part of the gradient viik as in the infinitesimal 
theory. 

Section 3 considers the equilibrium equations for the small 
strain deformation of linearly elastic bodies. The stress-strain 
relation for finite elastic deformations is used to show that 
with neglect of second-order terms, the Kirchhoff stresses aik 
are linearly related to e,̂  through the elastic moduli cikmn for 
small strains. Moreover to 0(e) the local equations of 
equilibrium for aik are those of the classical theory with a 
particular body force field, derived by taking the rotation of 
the elements into account. Thus to 0(e), the differential 
equations governing eik are formally identical with the 
equations of classical infinitesimal elasticity for a particular 
body force field. This is to be expected because by imposing a 
suitable rigid displacement, we can arrange that in the 
neighborhood of a typical particle P the displacements and 
rotations are small when the strains are small. For slender 
bodies with some dimensions large compared to a, it is also 
necessary to impose overall conditions of equilibrium because 
terms of 0(e2) neglected in the local equilibrium equations or 
in the boundary conditions can contribute to the overall 
balance of force on integration over the body. In this case 
some of the applied loads can be second order in e and 
therefore cannot be directly related to the stress distribution 
with a theory using a first-order stress-strain relation. 

The pure torsion of a very long cylinder of isotropic elastic 
material provides a simple example of the theory (Section 4). 
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The strains ejk and the stresses aik are those of St. Venant 
theory but they are generated by a finite displacement field in 
which the relative rotation of the ends can be large. 

A more interesting application of the theory is given in 
Section 5 which considers a beam of isotropic material bent 
about a principal axis of the cross section so that the de
formed central line lies in a plane. The beam is bent by end 
loads only, and it is assumed that the extension e of the beam 
is 0(e) or less where e is a measure of the maximum bending 
strain in the beam. The reference length a is taken to be half 
the depth of the beam and there is no restriction on the 
magnitude of the ratio l/a, I being the length of the beam. 
Thus the approach provides solutions for all values of l/a, in 
contrast to the St. Venant flexure solution, valid only for 
beams with small deflections, and to the theory of the elastica, 
developed for very thin rods. To 0(e), the bending moment M 
has the Bernoulli-Euler value, and overall equilibrium 
determines the shape of the deformed central line, which has 
the shape of the elastica. A feature of the approach is that the 
transverse shear force S and longitudinal force T on a section 
are in the nature of reactions which enter into the equations of 
overall equilibrium. For slender enough beams, S and T can 
be 0(e2) or less and so cannot be determined directly from 
stress distributions which are correct only to 0(e). Section 6 
uses the theory of Section 5 to treat a horizontal cantilever 
with a vertical end load. Approximate formulas for the end 
deflections are given that are within 1 percent for values of 
ella up to 3. 

Other applications of the theory for small-strain elastic 
deformations will be given in subsequent papers. 

2 Deformations With Small Strains 

We suppose that a body occupies a region V of space in its 
unstrained or reference state B. In a deformation of B into a 
body B*, a typical particle initially at the point x, moves to the 
point yh referred to a fixed rectangular Cartesian coordinate 
system. The line element ds* of 5* is given by 

ds*2 = dyfiy, = CikdXjdxk, • 

where Cik are the Cauchy strains,' 

Cik=yr,iyr.k- ( i ) 

A repeated Latin index implies summation over the values 1, 
2, 3 and a comma is used to denote partial differentiation with 
respect to x-„yr<i = dyr/dXj. 

We assume that the functions yt (x) and the Cauchy strain 
tensor Cik are C2 in V. Green's strain tensor eik is defined by 

eik= y (Cik-8ik), (2) 

where 8ik is the Kronecker delta. For deformations with small 
relative changes in distances between neighboring particles, 
elk will be small and we indicate this by writing 

e,*=0(e), (3) 

where e is a dimensionless loading parameter which is a 
measure of the amount of strain undergone by the body. As 
normally used, the 0 notation refers to limiting behavior as 
e^O. However, although small, e will be nonzero and we use 
(3) to indicate the order of magnitude of eik, so that (3) means 
that the magnitudes of eik will not exceed several times e. If 
the rotations as well as the strains are small, then eik are the 
usual infinitesimal strains. 

So far as changes in length and direction of infinitesimal 
elements are concerned, the local deformation at a particle is 
equivalent to a pure strain followed by a rigid rotation (see 
[1], for example). In mathematical terms, we have the 
decomposition (see [4]) 

We use the terminology of Prager [3] but with different notation. 

yi,k=rimsmk. (4) 

Here rik is a proper orthogonal tensor, 

' im 'km ^mi'mk ^ik» ' ̂  ik ' ~ * > 

while the symmetric tensor sik is the positive definite square 
root of Cik, 

^im^mk = ^ik' 

From (2) and (3), 

Sik = 8ik+eik+0(e2). 

It can be shown [5] that the rotation tensor rik satisfies 
linear equations of the form * 

^mn,k fnlps\pnk, 

where Apnk is antisymmetric in p,n and is determined by the 
strain tensor sik, 

1 ( - l - l 
•^pnk ~ ~S~ ( (srn,k~skn,r)srp ~i~ \skp.i ~ sip,k ) sin 

(5) 
"•" (Srt,i~sil,r)sktsrp Sin I • 

We denote by a the smallest reference length involved in the 
description of the body B and the loading causing the 
deformation. Thus a could be the smallest diameter of the 
region V or the smallest diameter of a loaded portion of the 
surface of B. Assuming that the first partial derivatives of eik 

are 0(e) la, we have from (5) and the definition of sik 

Apnk = ekp,„ - ek,hp + 0(e2)/« (6) 

and Apnk is 0(e) la. The derivatives rmn%k will then be 0(e) la, 
and so will be the derivatives yikl. However, when one or 
more dimensions of the body B are very large compared to a, 
the rotation of one part of the body relative to another need 
not be small even though the strains eik and their derivatives 
are small. 

The compatibility conditions on the Cauchy strains Cik (or 
equivalently the compatibility conditions [5] on Apnk for rlk to 
exist) give 

eik,mn + e,„„jk - eim<nk - enkJm = 0(e2)/«2, (7) 

if we assume that eik are 0(e) and that the first and second 
derivatives of eik are 0(e)la and 0(e)la2 , respectively. (If we 
know only that eik are 0(e) and eikJ are 0(e) la, then the left-
hand side of (7) is of the order of e times ejktrs.) The left-hand 
side of (7) vanishes when eik are compatible strains for an 
infinitesimal deformation. If we consider a simply connected 
region in Kwith dimensions comparable to a and containing a 
typical particle P of the body, the approach for infinitesimal 
deformations (see [6]) and equations (7) imply the existence of 
functions y, such that 

1 
e * = y ( » a + w*./)+0(e2) (8) 

in the region in question. By imposing a suitable rigid body 
displacement on the deformed body, we can arrange that to 
0(e), Vj are the actual displacements in the neighborhood of 
the particle P. We will see later through examples that func
tions vj can exist so that (8) holds throughout V even when a 
dimension of B is very large compared to a. 

When v,- exist satisfying (8) throughout V, the deformation 
in which a particle at *, goes to y\, where 

y;=Xi + v„ (9) 

will not be, in general, a deformation with small strains, i.e., 
it will not have Cauchy strains near 5ik in general. We 
therefore refer to y, as virtual displacements for the defor
mation. If the antisymmetric part of vlk 

1 
">!*= y (Vi,k~vkJ) 

is also 0(e), then the deformation (9) will have small strains. 
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A simple example is provided by the deformation for pure 
torsion of an isotropic cylinder of length /. The reference 
length a is the maximum distance of the boundary of the cross 
section from the axis of torsion, which is the jf3(or x3) axis. 
For twist of amount T = el a per unit length we take 

y,= {Xi C0STX3 -x2 sinTX3, x, sinwc3 +x2 COSTX3, 

X-i+TW), (10) 

where w(x{ ,x2) is the St. Venant torsion function. The strains 
elk are found from (1), (2), and (10) and we find that 

T I dw \ T ( dw \ 

( i i) 
to 0(e), the other components being 0(e2). The virtual 
displacements 

Vi=(-TX2Xi, TXXX3, TW) (12) 

provide infinitesimal strains equal to eik to 0(e). However, the 
deformation^/ = xt + v-, gives the Cauchy strains 

under the assumption that W is written as a symmetric 
function of ejk and eki (the differentiation with respect to emk 

treats emk distinct from ekm for k^m). If we denote the 
(symmetric) components of the Kirchhoff stress tensor by aik, 
then 

ff/> — Tk, 
dx. dW 

dyr deik 

Substituting for Tkj in (14) and multiplying by dxr/dy, we find 
that the equilibrium equations can be written as 

doik dx; 

dxk dyk 

where the Christoffel symbol is given by 

r j* = 
d2y„, dXj 

dxrdxk by 

The symmetry relation 

^im \^rmyk * "km,r "rk,m)' 

dW bW 
yur-^—=yk,r-9yk fyi,r 

(18) 

(19) 

(20) 

«.-'K£),+4 <*-M(£)'+4 c dw dw 

dx, dx2 

C{3 = T^-^--x2^+T2
Xix3, Ci3 = T(^^- +X^J+T2X2XJ, C3'3 = l + r 2 ( x f + ^ ) , 

and the strains eik agree with (11) to 0(e) only if we restrict the 
length of the cylinder so that T*3 = 0(e). 

3 Equilibrium Equations for Elastic Bodies 

The Lagrangian stress tensor Tik is defined so that the stress 
vector Th measured per unit area of the reference state, for a 
surface element with unit normal «, in the reference state is 
given by 

Tj = Tkink. 

When the deformed body B* is in equilibrium, the total 
applied force on a portion of the body which occupied a 
region V with surface 5" in the reference state is zero so that 

\siTunkdS+\YiF,dV=0, (13) 

where Ft are the components of the body force measured per 
unit volume of the reference state B. Use of the divergence 
theorem and the arbitrariness of V then gives the equilibrium 
equations 

dTkl 

dxk 
+ R = 0 . (14) 

An elastic material has a strain energy Wper unit volume of 
the reference state which is a function of the deformation 
gradient yitk. In a quasi-static deformation of the material, it 
is assumed that the rate of work of the applied forces is equal 
to the rate of change of the strain energy, and this leads to the 
stress-strain relation 

7V,= -
dW 

(15) 

The function Wis unchanged in value by a rigid body rotation 
of the deformed state and so depends on yiik only through the 
Cauchy strains. With (2) we therefore have 

W=W(eik), (16) 

and W also depends explicitly on x-, if the material is 
inhomogeneous. From (1) and (2) we then have 

dW dW 
-yi>m (17) 

follows from (17) and the symmetry of eik and (20) implies 
that the Eulerian stress tensor is symmetric. From (20), (14), 
and (15) we obtain 

j s , {y,Trk-ykTri)nrdS+\yi (yiFk-ykFi)dV=Q, (21) 

so that the resultant applied moment on any portion of the 
body is zero, as required for an equilibrium state. 

We now restrict attention to deformations with small 
strains. Many materials such as metals are elastic only for a 
limited range of strain, e.g., extensional strains up to 10~3 

approximately, and in this range of strain the stress-strain 
behavior is linear within the limits of experimental accuracy. 
We suppose that the reference state is unstressed and take 

" « ^ikmn^ik^mn* ^-ikmn ^mnik ^-kht 
(22) 

where the elastic moduli cikmn may depend on x,. The stresses 
oik are 

®ik t-ikmn &n (23) 

dyu de, ink 

Consistent with the accuracy of the assumption of linear 
behavior for small strains (and the accuracy to which the 
moduli cikm„ can be determined), second-order terms are 
ignored in calculating the strains eik from (2), just as second-
order terms are ignored in the classical theory for in
finitesimal deformations. To first order in the strains, the 
stresses are measured per unit area of either the reference state 
or the deformed state, and so are true stresses associated with 
directions in the deformed state of line elements which were 
initially parallel to the coordinate axes. For strains of the 
order of e the stresses are of the order of Ee, where E is a 
typical elastic modulus for the material, and for a consistent 
theory, the body force F, must be of the order of Ee/a or less 
and any applied surface traction must be of the order of Ee or 
less. 

If we assume as before that the first derivatives of eik are 
0(e) la, then the derivatives yi<kl will be 0(e) la, as discussed in 
the preceding section, and the Christoffel symbol in (20) will 
0(e) la. Thus neglecting terms of the order of Ee2/a, the 
equations of equilibrium become 
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daik 
+Fk 

dXj 
= 0, (24) 

3xk " K dyk 

in which dXj/dyk is evaluated to 0(1). To 0(1), yuk is the 
rotation tensor rik and dXj/dyk is rki. To our order of ac
curacy, it is only necessary to satisfy (24) to 0(e). 

If the tractions are prescribed on a portion ST of the sur
faces S of V, then 

Tkink = omkyhmnk = fi on ST, 

where 7", are the applied tractions of order Ee. Equivalently 
we have 

aik"k = Tk 

dXf 

&k 
= Ti on Sr- (25) 

To our order of approximation dx,/dyk in (25) need only be 
evaluated to 0(1) and f, are then the components of the ap
plied traction in the directions of line elements that were 
originally parallel to the coordinate axes. For zero surface 
tractions aik nk must vanish to 0(e) on ST. For some loadings, 
the components f, depend on the deformation, e.g., for a 
pressure loading P, 

T,= -PnT, 
where n* is the unit normal to the surface in the deformed 
state, so that to 0(1), 

nj=n. 
dxr by. 
dy, dx. 

(26) 

Thus for pressure P on a surface Sp we need to 0(e) 

crtt"t=--P«; on Sp. 
We note that for bodies with some dimensions very large 

compared to a, quantities of 0(e2) which are neglected in the 
local equilibrium equations (24) or in the boundary conditions 
(25) can contribute to the overall balance of force on in
tegration over the body. In fact, for slender bodies some of 
the applied loads can be second order in e and their relation to 
the deformation is determined from overall equilibrium 
considerations. Such second-order loads cannot be related 
directly to the stress distribution because second-order effects 
are neglected in the stress-strain relation. 

The strains eik must be such that the left-hand side of (7) is 
0(e2) and that the equilibrium equations (24) with the stresses 
(23) are satisfied to 0(e). To 0(e), the differential equations 
governing eik are therefore formally identical to the equations 
of classical infinitesimal elasticity for the strains generated by 
a particular body force field (zero when F, is zero). A strain 
field for an equilibrium infinitesimal deformation has the 
potential to supply a solution for large deflections and small 
strains. The torsion example of the preceding section for a 
very long cylinder is an illustration. It is usual to satisfy the 
governing differential equations exactly in determining 
solutions in classical elasticity, but it is important here to 
recognize that the equations need only be satisfied to 0(e). For 
slender bodies there is then no contradiction between 
satisfying the local equilibrium equations (24) and in addition 
imposing overall equilibrium conditions when second order 
loads are involved. 

When functions y, have been found which generate through 
(1) and (2) small strains eik which satisfy the equilibrium 
equations (24), it must be verified that the first derivatives of 
eik are also small, a condition under which (24) was derived. 

Materials subject to kinematic constraints can also be 
treated. In the case of incompressible materials, the condition 
of no volume change gives, to 0(e), 

e ,=0 

and the stresses are given by 

&ik ^ikmn^mn ~^~P^ikt 

M M 
(x). V, 

(X(z),0, Z(z)) 
t£*M 

^ 0<z) 

==3>-T ^ s \ 

(z) 

v3 

-j—» 

Fig. 1 Bending of a beam about a principal axis by end loads 

where the pressure p is a scalar function of position of the 
order of Ee. 

We note that a reference state under (small) initial stress 
adds a linear term in eik to the form (22) for W. For modeling 
of nonlinear small strain behavior, a third-order term is in
cluded in (22) and a corresponding second order term occurs 
in the stresses aik. For small enough strains, the linear terms 
will dominate (as shown in [7]), but for some materials, such 
as rock, at practical levels of strain the second-order terms are 
significant. This requires the second-order moduli to be 
several orders of magnitude larger than the first-order moduli 
Cikmn • 

4 Torsion of a Cylinder 

The small strain solution for pure torsion of a cylinder of 
homogeneous isotropic material is given by (10). The twist T 
per unit length is such that e = TO is small, a being the 
maximum distance of particles in the cross section from the 
axis of torsion. To 0(e), the nonzero strains are given by (11) 
and they provide stresses aik which satisfy the equations of 
equilibrium (24) with no body force and have zero traction on 
the lateral surface because w(xl,x2) is the St. Venant torsion 
function. The Kirchhoff stresses aik are equal to the stresses of 
the classical solution and the twisting moment has the St. 
Venant value. With the length / of the cylinder unrestricted 
there is no limit on the amount of rotation of one end of the 
cylinder relative to the other, but TO must be small in order to 
have small strains involved in the deformation (10). If the 
cylinder is not too long so that l/a is 0(1), then to 0(e) the 
deformation (10) involves displacements equal to those of the 
St. Venant solution and given by the virtual displacements 
(12). 

5 Bending of a Beam About a Principal Axis 

In this section we consider a beam of isotropic material bent 
about a principal axis of inertia of the cross section so that the 
deformed central line lies in a plane. The beam is bent by end 
loads only, there being no body forces and no tractions on the 
lateral surface of the beam. The approach leads to solutions 
valid for any value of the length to thickness ratio, within the 
assumption of small-strain, linear-elastic behavior. 

To fix ideas, we suppose that initially the beam is 
horizontal. We take the y} axis to be the line of centroids of 
the sections. The yt axis is directed vertically downward and 
the yx and y2 axes are principal axes of inertia of the cross 
section. Where convenient, we use x,y,z for the initial particle 
locations *,. The end z = 0 is held fixed, and the loads on the 
end z = 1 deform the central line into a plane curve in the^j -
y3 plane, / being the length of the beam. The tractions applied 
to the end z = I are statically equivalent to a downward 
vertical force Kand a horizontal force H through the centroid 
of the section together with a moment M, about an axis 
parallel to the y2 direction, Fig. 1. To avoid questions of 
instability due to flexure, we suppose that the moment of 
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inertia of the section about the y axis is smaller than that 
about the x axis. The reference length a is taken to be half the 
depth of the beam, and we assume that the diameter of the 
cross section in the.y direction is comparable to a. 

We suppose that in the deformed state the central line 
becomes the curve 

yi={X(z), 0, Z{z)}, (27) 

where the functions X,Z axe to be determined. The extension 
of the central line is denoted by e(z) so that we have 

X'2+Z'2=(\+e)2, 

where a prime denotes differentiation with respect to z- We 
require e to be 0(e) or smaller. The inclination of the tangent 
to the deformed central line is denoted by 8(z), so that 

sind=X'/(\+e), cosfl = Z'/(l+<?). (28) 

To have small strains, a cross section of the beam must 
become a surface close to a plane which is normal to the 
deformed central line. The deformation of the beam can be 
thought of as effected by first giving the particles a small 
displacement, then cross sections are rotated an amount 6 
about an axis parallel to the y2 axis through the centroid 
(0,0,z) of the section, and finally a translation is applied to 
bring the centroid to its proper location on the curve (27). 
Thus we take 

yl=X+(x+u)cosd + w sind, y2=y+v, 

y3=Z-(x+u)sm8+wcosB, (29) 

where u,v,w are functions of x,y,z which vanish with x andy. 
For small strains the first partial derivatives of u,v,w will be 
0(e), and then u,v,w will be 0(e«) because they vanish on the 
central line. We also assume that the derivative 8' is 0(e) la; to 
0(e), 6' is the curvature of the deformed central line. We have 

dy, 
dxk 

cos8 0 sin0 
0 1 0 

-sinO 0 cosfl 
+ 0(e). (30) 

— e'x + 
2 M £ + T * ! + ( ' - I ) 4 

v l c dx ~) 

dy 

The contribution of the term in 6'" to e33 will turn out to be of 
the second order in e at most, as will the contribution from e' 
to e13 and e23. Thus to 0(e) the nonzero components of the 
stresses aik are 

i* 
dx --'•(t+T'' + ('-fM 

023=tf"{-jfL + (2 + v)xy^, 

(35) 

By 

a33=E(e~8'x) 

where E is Young's modulus and ix is the shear modulus. 
With the boundary condition (33) on the flexure function x, 

the tractions on the lateral surface are zero to 0(e). From (35) 

d^ik I „,„(" dX 
dxk - ( " * " ( 

ixd" (36) 

With 6'" and e' of second order in e at most, the equilibrium 
equations (24) with F-, zero will be satisfied to 0(e). 

We note that the forms (35) for <r13 and a23 are correct only 
to 0(e). For a slender enough beam, 8" becomes 0(e2) and the 
shear stresses cr13, a23 are then second order in e at most; in 
general, they will no longer be given by (35) because second-
order terms in the stress-strain relations have been ignored. 

Virtual displacements vt which give the strains (34) to 0(e) 
through the infinitesimal forms (8) are given by 

Vi = -vex+ — 6'(x2-y2) + S o ' * * ' 
From (1) and (28) we can calculate Cik and we find that to 0(e) 

C„ = l + 2 
du 

~dx 
C22 = l + 2 

dv 

~dj' 
C3, = l+2e + 2-

dw 

dz 

du dw 
Cn=~dz~+^x~ 

dv dw 

dz dy 

du dv 

~dy Hx 

dx , dx f 
dx 

-XL + 

Guided by the St. Venant solution for flexure of a beam, we 
now assume that 

u= -vex+ — vB' (x2 -y2), v= -vey+vd'xy, 

w=8" (x+xy2). (32) 

Here c is Possion's ratio and the St. Venant flexure function 
x(x,y) is harmonic in the cross section A of the beam and 
satisfies the condition 

y ) . V 2 ] « * - ( 2 + »<)J0'«;, 
(33) 

on the boundary of the cross section, where (nx,ny) is the unit 
normal. We assume here that the center of flexure lies on the x 
axis; otherwise we add terms corresponding to torsion of the 
order of ell per unit length to the displacements (32) with a 
rotation of the end z = I of amount 0(e), in order to have zero 
twisting moment on the section z = I. With (32), the strain eik 

can be found from (2) and (31), and we find that, to 0(e), eI2 

= 0 and 

en = -ve+vd'x, e22= -ve+vd'x, 

e33=e-d'x+d'" (x+xy2), 

-26'x, 

(3D 

v2 = —vey+vd'xy, 

y 3= edz-8x+6"(x+xy2). 

The deformed shape of the central line, or equivalently the 
function 6(z), is determined from conditions of overall 
equilibrium. The resultant of the tractions on the surface 
which was initially the cross section z = constant is statically 
equivalent to transverse and longitudinal forces S{z) and 
T(z) through the deformed position of the centroid of the 
section together with a moment M(z) about an axis parallel 
to the^ 2 axis, Fig. 1. The forces S and Tact at an angle 8 to 
the.^ and^3 axes, respectively, and we have 

Scos0 + rsin0 = f T3ldA,- Ssind + Tcosfl = f T33dA, 

M=\A {(y3-Z)T3l-(y,-X)T33}dA. 

(37) 

where the integrals are evaluated over the cross section z 
constant. With (28) and (29) and 
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Tlei — On 
dxm 

we find that to 0(e) the moment is given by 

M— — \ xandA. (38) 

With the value for <r33 given by (35) we have to 0(e) 

M=EW, (39) 

where / is the moment of inertia of the cross section about the 
y axis. We also have to 0(e) 

S=\ ondA, T=\ oi3dA. 

With (35), (40) gives to 0(e) 

S=-EId", T=EAe, 

(40) 

(41) 

where A is the area of the cross section. The properties of the 
flexure function have been used in deriving the value for S, as 
in the St. Venant theory. We emphasize that expressions (40) 
and (41) for S and T are correct only to 0(e). For slender 
beams, S and T can be one or more orders of smallness less 
than EAe and terms ignored in deriving (40) can contribute to 
S and T. For any length beam, the value (39) for M in con
junction with the equations of overall equilibrium for an 
arbitrary portion of the beam, will be seen to be sufficient to 
determine the shape of the deformed central line and the 
forces S and T for a given end loading within the accuracy of 
the theory. Thus the forces S and Tcan be considered to be in 
the nature of reactions because they can be found without 
direct use of the stress-strain relations. For this special case of 
bending about a principal axis by end loads only, we will see 

' that equilibrium requires S to be - dM/dz so that the value 
given by (41) for S will still be the dominant term when S is of 
smaller order than EAe. 

For equilibrium of the portion of the beam between the end 
z = 0 and a section z = constant, we need 

M+VZ-HX=M0, Scosd+Tsin9=V, -Ssmd + Tcos8=H, 

(42) 

where MQ is the moment applied to the end z = 0. If we 
differentiate these relations with respect to z and use (28), we 
arrive at the (exact) differential form of the equilibrium 
conditions, 

M ' + S ( l + e ) = 0 , S' + Td'=0, T'-Sd'=0. (43) 

To our order of accuracy, e can be set equal to zero in the first 
of equations (43). Equations (43) are special cases of the 
general equations of equilibrium [1] for the bending and 
twisting of thin rods. 

The first of (43), with (39) and the second and third of (42), 
shows that the deformed central line has the shape of the 
elastica [1, 8]. 

If we take H and V to be zero, the simple case of pure 
bending by terminal couples, the equilibrium equations (42) 
show that S and 7̂  are zero and the bending moment Mhas the 
constant value M0. From (39), 9' is M0/EI to 0(e) and the 
central line becomes a circle of radius 1/6'. The extension e of 
the central line will be 0(e2) in general and will depend on the 
second-order effects in the stress-strain relations. The second-
order extension induced in an isotropic cylinder by bending 
has been considered by Blackburn and Green [9], 

The St. Venant solution for flexure by a transverse end 
load, the case when H and M, vanish, is derived on the 
assumption that 6 is 0(e). If we set M0 = VI and Z = z in the 
first of (42), use the value (39) for Mand integrate using 6 zero 
at z = 0, we get the St. Venant value 

• • T 7 ( ' - T ) ' (44) 

where e = Via/EI. Because the first of the overall equilibrium 
conditions (42) is satisfied to 0(e) only when 6 remains 0(e), the 
St. Venant solution is valid only for moderate values of l/a. 

6 Bending of a beam by a Vertical End Load 

To illustrate the approach of the preceding section, we 
consider a horizontal cantilever beam loaded by a vertical 
load V at the free end. With the horizontal load H zero we 
suppose that e is 0(e2) and verify this assumption later. We 
denote by L the value of Za t z = / so that L is the horizontal 
extent of the beam in the deformed position. From (28), 

L = Z(l) - s : cosfl dz (45) 

correct to 0(e). The end moment M0 is VL and as a measure of 
the strain in the beam we set 

e=M0a/EI=VLa/EI, 

so that e (assumed positive) is essentially the magnitude of the 
strain in the outer fibers at the fixed end. With the value (39) 
for M, the first of the equilibrium equations (42) gives, after 
division by EI, 

V e 
e'+—Z=—. (46) 

EI a 

If we differentiate (46), use (28) and ignore e in comparison 
with 1 we obtain 

+ — cos0 = O, 
aL 

(47) 

which is the equation of the elastica [1, 8]. (The coefficient 
e/aL is equal to V/EI.) Equation (47) can also be derived 
from the first of (43) by using S = Vcosd, which follows from 
the second and third of (42), and the value (39) for M. At the 
fixed end 6 is zero and at the end z = 1 the moment is zero so 
that we have 

= 0 at z = 0, = 0 at z = l. (48) 

From (46), 6' is el a at z = 0 where Z = 0. We see that (45) is 
consistent with equation (47) and the end values of 6'. One 
approach to determine 6 is to choose a value for el a, solve (47) 
numerically subject to 

' = 0, V=e/a at z = 0, (49) 

and by iteration find the value of e/aL which makes 6' zero at 
z = 1. The functions X(z) and Z(z) can then be found by 
integration from (28) (with e set equal to zero). The St. Venant 
solution (44) for small 8 is obtained by setting L equal to / and 
cos0 equal to 1 in (46) and using (49). 

A first integral of (47) is 

2e . e2 

-sin#= —= aL 
(50) 

where we have used (49). If we denote the value of 6 at z = I 
by 61, we have from (50) and (48) 

sxn0,= ——. (51) 

For 0/ to be appreciably different from zero, eL/a and 
therefore el/a must be 0(1), and the beam is very long com
pared to its lateral dimensions. From (46) and (47) we have, 
using Z < L, 

\6'\<e/a, \6"\<e/aL. 

From the first of these inequalities and (50), we have 

0 < sin0< 
1 eL 

~2 ~a~' 
(52) 

and after differentiating (47), we easily find that 
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\6'"\<ei/2a1. 

The estimates for the derivatives of 8 agree with those used in 
the preceding section. The fourth derivative of 9 can be shown 
to be no greater than e3/a3L in magnitude. 

That the extension of the beam is 0(e2) as assumed follows 
from 

T 

EA 

which is seen to be 0(e2) from (52) 

-—-sin0=——-
EA AaL 

sinfl, 

If we write 

then we find that 

£=Z/1, k=el/a, 

»=•£ r ( 2 - n - ^ f 2 ( 8 - 1 0 f 2 + 6 f 3 - r4)+o(fc5>, 

X k 

l 2 V 3 / 

k3 . , / 4 
120 

r 3 ( y +5r-7r2+3f3- y r)+o(/c5), 
(53) 

7 = ^ ^ ^ ( 2 ° - 1 5 ^ + 3 f 2 ) + °('t4)-
When & = e//a = 1, the end slope is close to half a radian and 
(53) gives 8/ to within 0.02 percent of the value obtained by 
numerical integration; the corresponding errors in the ap
proximate forms for X and Z are 0.2 and 0.4 percent, 
respectively. The leading terms in (53) are the values ac
cording to the St. Venant theory; for el/a = 1 they 
overestimate 6, and X(l) by only 2.5 and 5 percent, respec
tively. The approximate formulas 

X(l) X(l) 1 el r 1 / e / \ 2 " ) 

Z(l) 
I K(;)'} <»> $-i/fi + i, 

give the end values of X and Z to within 1 percent for til a up 
to 3. Because VL - M0 we also have the approximate for
mula 

Va1 

El "K(i)3 
with the same accuracy as the approximate formulas (54). 

The case of an end load at a fixed angle to the vertical can 
be treated similarly. 
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Plane Anisotropic Thermoelasticity 
The problem is formulated in terms of the three pairs of eigenvalues of the elasticity 
constants and the pair of eigenvalues of the heat conduction constants. Special 
attentions are given to the cases where the latter eigenvalue pair becomes equal to 
one or more pairs of the former group. The problem of a crack in an infinite 
medium is used as an example and solved exactly. This solution, however, is valid 
only for the case where the four pairs of eigenvalues are distinct. 

1 Introduction 

For plane deformations in a general anisotropic material, 
the most convenient and powerful approach appears to be 
that introduced by Stroh [1], The approach was used to study 
surface waves by Barnett et al. [2], and Chadwick and Smith 
[3], It was extensively used in dealing with dislocation and 
elasticity problems [4-6]. In the context of analyzing stress 
singularities, a most exhaustive and complete treatment can 
be found in a series of recent papers by Ting et al. (See e.g. 
[7-9]). A plane-stress version of the Stroh vectors was 
discussed by Wu [10], 

A systematic use of the approach was conducted by 
Clements [11] in studying the thermal stress in a half space. 
His work was a generalization of Akoz and Tauchert [12] and 
Sharma [13]. In this paper the plane deformation is for
mulated in general terms. The basic elements are the three 
pairs of eigenvalues of the elasticity constants and the pair of 
eigenvalues of the heat conduction constants. Special at
tentions are given to the cases where the heat-eigenvalue 
becomes equal to a single or double elasticity-eigenvalue. 

The governing equations, formulated in terms of several 
complex variables, resemble very much the structure of 
equations governing the forced vibrations of discrete systems 
in that the heat-eigenvalue plays the role of forcing frequency 
while the elasticity-eigenvalues may be identified with the 
natural frequencies. The constructions of a particular solution 
as a linear combination of the Stroh vectors is greatly 
facilitated by this observation. A direct application of the 
explicit result given by Ting and Hoang [9] leads to the exact 
solution for a crack in an infinite medium subjected to remote 
stresses and temperature. 

2 Basic Equations 

In a fixed rectangular coordinates z, (/ = 1,2, 3), let uh e,y, 
ay, T, and <?, be the displacement, strain, stress, temperature, 
and heat flux, respectively. The complete set of governing 
equations for uncoupled thermoelastic problems involving 
homogeneous but anisotropic materials are [14]: 
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q^-kijTj, (2 .1 ) 

Qi,i=-kuTitl=Q, (2 .2 ) 

£(, = 1 / 2 ( M W + « ; , , ) , (2 .3 ) 

Oij=CijkeeiCe ~ PijT—Cykeuk,e ~ PijT, (2 .4 ) 

°i]J = CijkeUk,ej ~ PijTj = 0 , (2 .5 ) 

where 

ky = kji, (2.6) 

*~ijke Cjjke ^ijek **keij * \^" ' 

Pij^Pji (2.8) 

are, respectively, the coefficients of heat conduction, 
elasticity constants of the anisotropic material, and stress-
temperature coefficients. Unless otherwise stated, repeated 
indices imply summation. Also, Greek suffixes will be un
derstood to take the values 1 and 2 only. 

If the displacement components «, and temperature T are 
independent of the z3-coordinate, then (2.2) and (2.5) become 

ca0J>a<3 — 0 ' 

,=/3,-„r„=o 

(2.9) 

(2.10) LWduk,t 

The solution to the preceding equations may be expressed in 
terms of new variables of the form 

Z = z , +pz2, 

For the temperature distribution, we assume 

df 
nzl,z2)=f'(Z) = dZ 

(2.11) 

(2.12) 

This form will give a solution to (2.9) if p satisfies the 
equation 

kn +2knp + k12p
2=0. (2.13) 

Since the quadratic form ka$ qa q^ is positive-definite (see 
Carslaw and Jaeger [15]), the two roots o.f(2.13) are complex 
conjugate. We denote the roots byp0 andp 0 . Hence a general 
form for the temperature may be written as 

nz1,z2)=MZa)+gi(Z0) (2.14) 

where 

Z0=Zl+pQZ2 (2-15) 

and overbars indicate complex conjugates. 

724/Vol. 51, DECEMBER 1984 Transactions of the ASME 

Copyright © 1984 by ASME
Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A general homogeneous solution to (2.10) may be obtained 
by letting 

ui = vLf(Z)=vif(zl+pz2) (2.16) 

where p and vt are constants to be determined and / is an 
arbitrary function of Z. Substituting the above into the 
homogeneous equations defined by (2.10) we obtain 

DyVj=0 (2.17) 

where 

D„ =D„ (p) = c,vl + (c , w + Can )p + Caj2p
2 (2.18) 

It follows that for a nontrivial solution of vh the determinant 
of Djj must vanish, i.e., 

\Du{j>)\=0. (2.19) 

Since the roots of (2.19) are all nonreal [7] there are three 
pairs of complex conjugates for/? which will be donated bypL 

a.ndpL (L = 1,2,3,), and three pairs of associated eigen
vectors. 

If the pL's are distinct, the three pairs of eigenvectors are 
denoted by 

Vu = vLi(pL) and vLi = vLi(pL) (2.20) 

which are obtained from 

Dij(pL)vLj(pL)=0 (2.21) 

The relation, together with (2.18), indicates that vLi(p2) is 
indeed the eigenvector associated with/?L (see (2.20)). We will 
implicitly assume that the eigenvectors are normalized in 
certain fashion so that no arbitrary constants are involved. 
Finally, the associated solutions will be denoted by 

«/ = uu = vLifL (ZL) + vLigL (ZL) (2.22) 

°ij = °Lij = TLij—fL(ZL)+fLij-^gL(ZL), (2.23) 

where 

ZL=ZI+PLZ2, (2.24) 

TLij = ( C m +pL Cm)vLk, (2.25) 

and no sum is performed on L. The coefficients TLJJ also 
satisfy the relations [7] 

T12=-PT22, TU=P2T22, Tu=-prn. (2.26) 

If pL is a -double root, then a second independent solution 
may be written as [7] 

u, = uh = [v'ufL (ZL)+ vuZ2fL (ZL)] 

+ [v'ugL(ZL)+vLiz2g'L(ZL)] (2.27) 

"U = °U = [r'ujfl (ZL)+ TLijZ2f[(ZL)] 

+ b'ujgi (ZL)+fLijz2gl(ZL)] (2.28) 

where 

d d 
v'u = -r- vLi(pL), T'Lii = — TLij(pL) (2.29) 

"PL "PL 

and 

Duvj'+D(,vj=0, (2.30) 

-r'ij = (cm +pcm)v'k + cijk2vk. (2.31) 
In the foregoing expressions no sum is performed on L. 

For isotropic materials, p = ± /' is a triple root but u} is 
uncoupled from ut and u2. As it was commented by Ting and 
Chou [7], the existence of a triple root for a coupled defor
mation is not known. We will therefore discard this case in the 
following discussion. 

We return now to the determination of a particular solution 
to (2.10) which, in view of (2.12)-(2.15), may be written as 

Ci0k6Uk.es = bi (Po)fo(Z0) (2.32) 

where 

bi(Po) = Pn+PoPo- (2-33) 
It is clear that a similar solution will be determined to pair 
with g0. The structure of a particular solution is greatly af
fected by the root p0 of (2.13) and roots pL (L = 1,2,3) of 
(2.19). 

(A) PoPipl9ip29ipi 

This is essentially the case studied by Clements [11] for a 
special class of problems. The even more specialized studies 
given in [12,13] also belong to this case. We assume 

Uj = u0i = v0if0(Z0), o0ij = Toijfo(Z0) (2.34) 

where T0ij are related to v0i by (2.25). To determine v0i, we 
substitute the first of (2.34) into (2.32) to obtain 

Du(.Po)vOJ = bi(p0). (2.35) 

Since D:j (p0) is nonsingular, 

% = v0j (p0) = Dji' (p0)b, (A,) (2.36) 

where Djj[. is the inverse of Dy. A complete particular 
solution may now be written as 

Uj = u0i = v0if0(Z0) + vQig0(Z0), (2.37) 

°H = "on = Toijfo(Z0) + foijgd(Z0), (2.38) 

where T0iJ are again related to voi by (2.25). 
The structure of the equations (2.32) parallels to that of the 

forced vibrations of a discrete system. In this connection, p0 

may be interpreted as the forcing frequency while pL (L = 
1,2,3) the natural frequencies. It is therefore instructive to 
rewrite (2.34) in terms of the "natural modes" as follows: 

ui = u0i=aLvLifa(Z0) (2.39) 

where aL are constants to be determined from 

DiJ(p0)vLjaL=bi. (2.40) 

The constants aL are, of course, related to the constants voj, 
equation (2.36), in a trivial manner, but the mode-approach 
will facilitate the presentation of cases where a "reasonance" 
is involved. 

(B) P\*p2=Pi, PO^PL 

The solution (2.39) must be modified to accommodate 
(2.27). We write 

ul = u0i=(aavai+a3vil)f0(Z(,). (2.41) 

Substituting the foregoing into (2.32), we find that the 
constants a, must satisfy 

Dij (PoM^q/ + a3 vij] = bi. (2.42) 

(C) pi ^p2 ?tp3 =p0 

The linear combination must be chosen to reflect the 
resonance with respect to u3i. Accordingly, 

«; = «o/ = aavaif0(Z0) + a} v3iZ2fo(Z0). (2.43) 

Substituting the foregoing into (2.32) and noting that 

Dij(p0)vv(p3) = Q, (2.44) 

we obtain 

Din (Po)v*jaa +D'ij (p0)v3Ja3 = bi (2.45) 

which may be solved for the constants a,-. 

(D) pl =p2 *p3 =p0 

The results for this case may be obtained from (2.43)-(2.45) 
by replacing v2i = v'u. 

Journal of Applied Mechanics DECEMBER 1984, Vol. 51 / 725 

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

http://Ci0k6Uk.es


(E) Pi *p2 = p 3 =p0 

The resonance occurs at a double root. Accordingly, 

H, = u0l•=al ViJ0(Z0) + a2V2iZ2fo(ZQ) 

+ a, [2viiZzfi(Z0) + v2izlfS(Z0)]. (2.46) 

Substituting the foregoing into (2.32) and applying (2.17) and 
(2.30), we get 

A , iPo)vij"i + D!j (Po)vy<<2 (2.47) 

+ 2[D!j (p0)vij + cilJ2 v2j]a3 =bj. 

These are the needed equations for the determination of a,-. 
For case (A), the general solution may now be written as 

(2.48) 

(2.49) 

(2.50) 

(Zi,z2)=MZ0) + gi(Z0), 

3 

Ut(Zi,Z2)= X) [vLifL(ZL)+VLigL(ZL)}, 
L = 0 

3 

°u Ui >z2) = L I W I (Z/.) + ?^£ (ZL )} 
L = 0 

-|8j/[/o(Zo)]+g6(Zo)]. 
The general solutions for other cases may be formed in a 
similar manner. 

3 A Crack in a Homogeneous Anisotropic Material 

Consider a crack of length 2a located on the Z\ -axis between 
Z\ = -a and zx = + a in an infinite anisotropic elastic 
material subjected to a state of uniform remote stresses a2i 

and temperature T" at infinity. The surface of the crack is 
stress-free and also kept at zero temperature. To study the 
effects of the crack, it suffices to consider the associated 
problem in which the crack surface satisfies the conditions 

T=-T°° on -a<Zi <+a (3.1) 

ff2/ = -ff2/ on -a<Zi<+a (3.2) 

and the temperature and stresses vanish at infinity. This is just 
the problem considered by Ting and Hoang [9] where the 
temperature effect was not included. 

To this end, we choose in (2.48) and (2.49) 

fL=gL = l/2ALKZL
2-a2y/2-ZL] (3.3) 

where AL (L = 0,1,2,3) are arbitrary complex constants. The 
temperature, displacements and stresses are 

r Z0 T=ReA o • ' ] • ^ ( Z g - a 2 ) " 2 

u,=Ret, ALvLi[(Zl-a^ -ZL], 

(3.4) 

(3.5) 
L = 0 

3 

g'=4£^T4(zi4r"'] 
-A )fy[ (Zg-fl2)1 • « B -

It is noted that Tand ay vanish at infinity. 
The boundary conditions (3.1) and (3.2) now become 

• 7°° =Re A 
°l±i(a-

zx 

-z\y -]• 

(3.6) 

(3.7) 

- ^ 4 E 4 ^ - ^ 4 [ - ^ - I ] (3.8) 
for — a<Z\ < + a. They are satisfied if we let 

A0 = T", 

£ AL rL2j =R% = <r$J + r » (fjy - r02j). 

where 

T0ij=(cm +P0Cijk2)Dkel(Po)Wel +PoPe2)-

The solution follows directly from that of [9]. It is 

u, = t Re\j~' rhs VLi \(Zl-a>)"> - z j ] * £ 

+Re r°Dfj'(p0)Wji +Pofe)[ (Zg - a 2 ) 1 / 2 - Z 0 ] , 

°ll = t M J-lrL2SrLij[{Zl -a*)"* -ZL] }R?S 

L = l 

+Rer°(ToiJ-/3„)[(Z%-a2)U2 - Z 0 ] , 

where T*L2i and J are given in [9], 
3 

Z) 7L2/ T*L2S = J5js, J= det(TL2j). 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.9) 

The stress distribution near the tip x^ = a becomes 

+ T°°(TQij-piJ){oU2} 

where ZL - a = r £L (£ = 0 ,1 ,2 ,3) . 

4 Conclusion 

The exact solution obtained by Ting and Hoang [9] for a 
crack in an infinite anisotropic elastic material is generalized 
to include temperature effect. It is obtained for the case where 
the heat conduction property is not in reasonance with the 
elasticity property (see (2.13) and (2.19)). 

In terms of plane anisotropic thermoelasticity, our results 
obtained for the resonance cases also appear to be new. 
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On a Stress Function Method of 
Plane-Stress Thermoelastic 
Problem in a Multiply Connected 
Region of Variable Thickness 
A plane-stress thermoelastic problem in a multiply connected region of variable 
thickness is formulated in terms of a stress function by deriving new Michel! in
tegral conditions necessary for the assurance of single-valuedness of rotation and 
displacements. The system of fundamental equations is solved by means of a finite 
difference method and numerical calculations are carried out for the cases of a 
rectangular plate of variable thickness with a rectangular hole. 

1 Introduction 

The plane thermal-stress problem in a multiply connected 
region has attracted the attention of numerous investigators 
[1-4]. However, no solutions to plane-stress thermoelastic 
problems in a multiply connected region of variable thickness 
necessitating an assurance of single-valuedness of rotation 
and displacements have been reported. The determination of 
the thermal stresses in a multiply connected region of variable 
thickness plays an important role in the design of structural 
elements such as fins, cylinder heads, and rotating disks. 

The aim of this paper is to present the formulation of the 
plane-stress thermoelastic problem in a multiply connected 
region of variable thickness in terms of Airy's stress function. 
New Michell integral conditions necessary for the assurance 
of single-valuedness of the rotation and displacements are 
derived taking into account the variation in thickness in both 
the x and y directions. The resulting system of governing 
equations obtained here is solved numerically by means of a 
finite difference method. Although the numerical method 
possesses some drawbacks, which are immediately apparent 
when problems with two distinct boundary geometries are 
considered, the application of this method will enable one to 
obtain a system of simultaneous linear equations with respect 
to stress functin to be solved directly by replacing each partial 
differential term in the governing equations of the problem 
with the corresponding finite difference operator. Fur
thermore, an application of some weighted residual technique 
or variational principle (such as energy minimization) 
necessary for application of the finite element method is 
unnecessary for finite difference method. 

The effect of the variation of the thickness on the 
distributions of the temperature and the thermal stresses are 
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discussed from the numerical results for a finite thin rec
tangular plate with a rectangular hole and having a decreasing 
thickness from the inner boundary toward the outer 
boundary. 

2 The Plane-Stress Thermoelastic Problem for a 
Multiply Connected Region of Variable Thickness 

2.1 Temperature Field. Consider a multiply connected 
region of variable thickness (i.e., a finite plate of variable 
thickness with many holes) bounded by M+ 1 nonintersecting 
contours C0, Q CM of which C0 contains all the others 
as shown in Fig. 1(a). It is assumed that the multiply con
nected region, initially at the same uniform temperature T0 as 
the surrounding media, is exposed to abrupt changes 
Tu(i = 0,l,2, . . . ,M) in the surrounding temperatures 
adjacent to the boundaries C, and that there is a heat loss into 
the surrounding media at the constant temperature T0 on the 
upper and lower surfaces of the finite region. Now we take an 
elemental volume with variations of thickness in both the x 
and y directions as shown in Fig. 1(b). If the thickness of the 
position of the coordinates (x,y) is expressed by D(x,y), then 
the following heat-conduction equation from the con
sideration of the equilibrium of heat for the elemental volume 
may be obtained: 

(a) (b) 

Fig. 1 Multiply connected region of variable thickness 
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Cp 
dT 

Yt ' 

/d2T d2T\ X /3D dT 3D 3T\ 

dy2 / + D\Yx Yx*' Yy Yy) 

2h0 
(T-T0)J1 + 

( * ) • ( 
3D\2 

dy) 
(1) 

D 

where c, p, and X denote the specific heat, density, and 
thermal conductivity, respectively, and h0 is the heat transfer 
coefficient of the upper and lower surfaces of the region. 

From the preceding description, the initial and boundary 
conditions may be expressed as 

T=T0, at t = 0 
N dT 
X — +hu( r - r „ ) = 0 , on C, 

arii 

(2) 

(3) 

where «, is the outward normal at the point p , on the ;th 
boundary C, and hu is the heat transfer coefficient on the 
boundary. 

2.2 Plane-Stress Thermoelastic Problem. The plane-stress 
thermoelastic problem in the multiply connected region of 
variable thickness associated with the heat-conduction 
problem described in the foregoing is formulated in terms of 
Airy's stress function, assuming that both the thickness itself 
and the change in thickness are small, and that the method of 
analysis to the plane-stress problem of constant thickness can 
be extended to the same problem of variable thickness. 

First, the equations of equilibrium of stress components for 
the element as shown in Fig. 1(b) are 

d(Doxx) | 3(Doxy) _ Q d(Doxy) | 3(Doyy) _ 

dx dy ' dx dy 
0. (4) 

These equilibrium equations are identically satisfied by Airy's 
stress function defined by the following equations similar to 
those in the constant-thickness case: 

i a2} 1 d^x 
D dx2' 

1 d2
X 

(5) 
" D3y2' yy Ddx2' ~xy Ddxdy 

The stress-strain relations for the plane-stress thermoelastic 
problem are ' 

1 
(oxx-voyy) +aT, eyy= - (ayy-vaxx) +aT, 

1 
;(1 + " K (6) 

where E, a, and v are the Young's modulus, the linear thermal 
expansion coefficient, and the Poisson's ratio, respectively. 
The compatibility condition for these strain components is 

d2t 
+ 

32e 32t 
(7) 

dy2 ' dx2 dxdy 

Substituting equations (6) into equation (7) and expressing by 
equations (5) the stress components in the resulting equation, 
yield the following compatibility equation of Airy's stress 
function representation. 

d4X , „ 3 4
X + 2 

dx4 dx2dy2 

_ 2 3D 33
x 

D dy 3x2dy 

d2D d2D 

'"dx2 + " V 

_ d2D 

dy 

+ 
d4

x 2 3D d3
x 

3yA D YcYc3 

2 dD d3
x 

2 3D 33x 
b d~y YJ3 

D dx dxdy + 
/dD\2 

" \dx) ~ 

*1 
dx'' + 

= -EuD 

2+vY^\W + 

27"N 

dy2 

DID 

1 T2 (dD\2 _ 2v / 
DID\YJ) ~ J ) \ 

2(1 + v) /2 

\b 

2v /dD 

~D\Yy 

dD\2 

Hy) . 

3D\-

Yx) 

D 

2 dD dD 
dx dy 

dh d2D\ 

dxdy) dxdy 

/d2T d2T\ 

\Yc2+Y2) (8) 

Now the traction-free boundary conditions on the r'th 
boundary C, may be expressed in terms of Airy's stress 
function as follows: 

(9) 
(x)P/ =cuxp.+ c2iyp.+ cy, 

(dx/dn')p. =cucos(x,n')p. +c2icos(y,n')p. 

where />, is an arbitrary point on C, and n' is an arbitrary 
direction which does not coincide with the tangential direction 
to C,. Since the addition of a linear function to x does not 
affect the stress distribution, one set of these constants 
Cj, C/'= 1,2,3; ; = 0, 1, . . . ,M) in the multiply connected 
region may be taken to be zero and it is usually convenient to 
take cj0 = 0. The remaining 3M constants cjk(k= 1,2 M) 
must be determined from the following conditions necessary 
for the assurance of single-valuedness of the rotation and 
displacements pointed out by Michell [5]: 

$tfo>j=0, $dux=0, §duy=0. (10) 

But there seems to be no known results on the conditions that 
must be considered to ensure the single-valuedness of the 
rotation and displacements in the multiply connected region 
of variable thickness. In this paper, therefore, we derive the 
conditions necessary for the assurance of single-valuedness of 
the rotation and displacements, taking into account the 
variation of thickness in both the x and y directions in terms 
of Airy's stress function as follows: 

-"•'^KiMS)- "" 

*«(£)-»->Mi(iM£H ™ 

*<(£)• •««>M=(iM£)-d 

dy \J 
0 (13) 

where Z,, is a closed integral path including the boundary 
curve C, in the interior of the multiply connected region, n is 
the normal direction to Lh and s represents the arc length 
along the curve £, . 

Finally, the formulation of the plane-stress thermoelastic 
problem in the multiply connected region of variable 
thickness in terms of Airy's stress function has been 
established by the equations (5), (8), (9), and (11)—(13). 

In general, there are no exact solutions to the plane-stress 
thermoelastic problems in bodies with two-dimensional 
temperature fields when the thickness varies in both the x and 
y directions, or when the boundary curves are irregular, that 
is, not parallel to coordinates of a system. Hence we now 
describe how the resulting governing equations previously 
formulated are solved by means of the finite difference 
method. 

3 Finite Difference Representation of the Governing 
Equations 

We take the finite difference grids with spatial intervals Ax 
and Ay in the x and y directions, respectively, and At as the 
time interval, and use the subscripts /, j and the superscript k 
to denote the fth and y'th discrete points in the x and y 
directions, respectively, and the £th discrete time. Then the 
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transient heat-conduction equation (1) in the multiply con
nected region of variable thickness may be expressed in the 
finite difference form as follows: 

' 1 2 
+ (An)2 

+ 

xf? * - r — 
hJ L (At 

( A + u - A - i , y ) 2 ^ (A ,y + i -A , i - i ) 

+ 

4(A£)2 + • 4(A^)2 

T — -

(A?)2 4A,;(A?)2 

A+ 1 ,y-A 

^]ftn. 

4A,y(A?)2 

- [ + 
D i.j+l ' 

4A,J(Ar )) 

D j , J+1 

4A,;(Ai?)2 

A y - l "If* 

]^y-• A , ; - i f*-i 
J /, y 

AT 

(14) 

A: 

r 0 ' '0 

A/ Vo 

T-T0 

D(x,y) 
'0 

fl5^ 

(Af) ' 

1 

(A^)2 

MAT,)2 

where 7^y- is the unknown temperature at the grid point (;', j) 
at the current time T=rk, T\ J ' denotes the known tem
perature at T = ?>_!' and in equation (14) the following 
dimensionless quantities, with Tlt l0 taken as a reference 
temperature and a reference length, respectively, were in
troduced: 

€ = 

r,-r0 
The values of temperature at each time step are determined by 
solving the simultaneous linear equations obtained from the 
application of equation (14) to all the grid points including the 
grid points on the M+ 1 boundary curves. 

Now we can express the governing differential equation (8) 
for the plane-stress thermoelastic problem, taking into ac
count the variation of thickness in both the x and y directions, 
as follows: 
(6c, + 4c2 +6c3 - 2 c 8 -2c9)xij- (4c, +2c2 - 2 c 4 

- 2c7 - c8)x,-+1, j - (4c, + 2c2 + 2c4 + 2c7 - c8)x,--1, ,-

- (2c2 + 4c3 - 2c5 - 2 c 6 - c 9 ) X ; , J+, - (2c2 + 4c3 + 2c5 

+ 2c 6 - c 9 )x / , y - i+ (c 2 - c 6 - c 7 +c 1 0 )x , -n ,y + i 

+ ( C 2 + C 6 - C 7 - C 1 0 ) x / + W - 1 + ( C 2 - C 6 + C 7 

- Cio)Xi-1,;+1 + (c2 + c6 + c7 + c10)xf_ i, j-1 

+ (C\ -C4)Xi + 2,j+(C1 +C4)Xi-2,j+(Ci-C5)XiJ+2 
+ (Ci+Cs)Xi,j-2+Ci = 0 (16) 

where Xij = Xij/[Ea(Tx - TQ)ll] andc, - c u are: 

c , = l / ( A £ ) 4 , c2=2/(A?)2(A^)2 , c3 = l / (A,?)\ 

c4=(D, /+ i , y -A- i ,y ) / [2A- ,y(A^) 4 ] , 
ci=0i,j+i-DiJ_i)/[2DiJ(An)

4], c6 = (A,y+i 
-A,y- . ) / [2A,y(A?)2 (A1 ? )2 ] ) 

CT=0,+ l,j-D,.Uj)/l2Du(Ai)HAn)2] 

c8 = [ ( A + i , y - A - i , y ) 2 / [ 2 A , y ( A £ ) 2 ] 
- " / , y (A ,y + i -A .y - i ) 2 / [20 , , y (A i , ) 2 ] 

- ( A + i , y + A - i , y - 2 A , y ) / ( A £ ) 2 + ^ y ( A , / + > 
+ A y - i - 2 A ; ) / ( A ^ ) 2 ] / [ A , y ( A ? ) 2 ] , 
c9 = I (A,y+ i -A , ; - i ) 2 / [2A, ; (Ar?) 2 ] 

- vu j ( A + 1 , y - A - 1 , y)2/[2A, y (A£)2] 

- (A,y+ i + A , y - i - 2 A , y ) / ( A 7 , ) 2 - ^ y ( A + i , y 
+ A „ . , y - 2 A , y ) / ( A ^ ) 2 ) / [ A , y 

(17) 

X (Aij) 2 ] , c10 = ( 1 + x,.,) 

X_[2(A+1,y - A - i , y ) (A,y+ i - A .y - i ) 
/A . y — A'+i,y+i + A+ i ,y - i + A - w + i 
-A_i,y-1 ] / [8A,y(A?)2(A7?)2 ] , 
Cn=A,y [ ( ^ + i , y+? / - i , y -2 f ; , 7 ) / (A? ) 2 

+ (f/,y+1 + f /,y„1-2f,v)/(A^)2]. 

Finally, the new Michell integral conditions (11)-(13) may be 
expressed in the following finite difference forms: 

§/., ( M/'imX;,y+ W2mX/+i,y+ W3mX,-i,y 
+ ^4mX;,y+i + W%mXij-\ + W6mxi + 2j 
+ WlmXi-2J + WimXi,j+2 + W9mXi,j-2 
+ w\omXi+uj+\ + ^nmX/+i,y-i + Wi2mX;-i,y+i 
+ » W / - i , y - i + »W<fc"=0 \m = 1,2,3) (18) 

where ds = ds/l0, the subscripts m = l, 2, 3 denote the con
ditions necessary for the assurance of single-valuedness of the 
rotation and the displacements in the x and y directions, 
respectively and Wlm — ^1 4„, are: 

Wlm = 2{bhn+b2m), Wlm = - (bim+b3m), 
w3m=b3m-bim, W4m = -(b2m+b4m), W5m = b4m-b2m, 
W6m = - Wlm = bim, Wim = - W9m = b9m, 
"10m =bs,„ —blm, 
W\ i,„ = b6m + blm, Wn,„ = -b6m+ blm, 
WX3m = - (b5m+blm), WX4m = dlm(fi+iJ 

-f;_,,y)/(2A?)+rf2,„(7',.;+1-f,.y_,)/(2A^) 
* u = [ * i o i ( A + i , y - A - i , y ) / ( 2 A ? ) 
- f tn i " / ,y(A,y+ 1 -A,y- i ) / (2A7;) ] 
/ (A ,yA?) 2 , b2l=[-bmViJ(Di+lJ 

- A _ i , y ) / ( 2 A ? ) + f t , 1 1 ( A , y + 1 - A , y - i ) 
/(2Ar,)]/(A,yAr,)2, bi{ =bm[W) ~2 

+ (A,7)-2]/(AyA?), 641=6,„[(A?)-2 

+ (Ar,)-2]/0uAv), b5i=(bul/A^+bm/AV) 
/(2D,jAZAV), b6l = (bm/Ar,-blu/A!i)/ 
/(2D,jA^Ar,), bn=(l + ViJ)x[bul0i+1j 

- A - i , y ) / ( 2 A £ ) + Z > , 0 , ( A y + , - A , y - i ) 
/(2A^)]/(4A,yA|A7,), b81=bm 

/ [2A,y(A?)3] , b9l=bm/[2DiJ(Ar,y], 
bm =cos($,n)u, bm =cos(ri,n)iJ 

bi2 = rijbii+tibl22/(A%)2, b22=rijb2i 

+ Hibm/(Ar,)2, bn = bmX[(AH)-2 

+ (Ar,)~2]/0uA^), Z>42=fc„2[(A£)-2 

+ (A»,)-2]/(A>yA^), b52 = (bim/AV + bn2/At;) 
/(WuAtA,j), b62=(bl02/Ar,-bu2/A^ 
/(2A,yA£A?7), b12=rijbn, bn=bi02 

/ [2A,y(A?)3] , &9 2=^1 I 2 /[2Ay(A7/)3] , 
bw2 = Vjbm +£ibm,_bu2 = rijbni -£ibioi, 
bx22 = [bm0i+lj-Di_lJ)/(2AH) 
-bm0iJ+i-DiJ_i)/(2Ay])[/DlJ 

b\i = £ibm - tijbi22/(A£)2, b23 = Zjbm 

-Vjbi22/(A%)2, b3} = -b42An/A£, b43=b32A£ 

/Ari, bS3 =(bi02/A^-bm/A7,)/(2DijA^Ar,) 

b63 = - ( 6 , 0 2 / A f + 6 „ 2 / A i j ) / ( 2 5 / i y A { A i j ) , 

b73 = -S,b71, -&83 = - * i i 2 / [ 2 A , y ( A ? ) 3 ] , 

^93=^i02 / [2A,y(A7, ) 3 ] , bm=[bm0i+u 

-D^iJ)/(2A^+bul(2 + PiJ)(Dij+i 
-A . y - i ) / (2Ai / ) ] /0 , . , -Af ) 2 

*ii3 = [*ioi(2+«-,•,,) ( A + i . ; - A - i ^ ) / ( 2 A £ ) 
+ * ,„ (A,y + 1 -A,y- i ) / (2A^)] / (AyA7 ? ) 2 

dn =bm 

^21 =bni 

09) 
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Fig 2 Rectangular plate of variable thickness with a rectangular hole 
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Fig. 3 Effect of variation of thickness on temperature distribution on x 
axis (m0 = 0) 

dl2=d23=bl02, 
d22 = —dl3 = bU2, 
The integrations of equations (18) are evaluated by the use 

of numerical integration methods (for example, Simpson's 
rule). The numerical analysis of the plane-stress thermoelastic 
problem formulated in terms of Airy's stress function in the 
multiply connected region with the variation in the thickness 
in both the x and y directions by the finite difference method 
is reduced to determination of the values of the stress function 
at the grid points in the interior of the region and the 
unknown constants cjk(j— 1, 2, 3; k=\, 2 M) in 
equation (9) by solving the simultaneous equations obtained 
from application of equation (16) to the same grid points and 
the numerical integrations of equations (18). Then, the values 
of the stress function at the grid points on the boundary 
curves C, are readily determined by the use of equations (9). 
Once the values of the stress function at all grid points in
cluding those on the boundary curves at each time step are 
determined, the desired plane thermal stress components are 
readily obtained by substituting the values into the finite 
difference representations of equations (5). 

4 Numerical Calculations and Discussion 
Consider the distributions of the transient temperature and 

plane thermal stress in a thin rectangular plate of dimension 

Fig. 4 Effect of variation of thickness on Oyy on x axis (/TIQ = 0) 

0.2 m0=0 

m0=10 

0.01 0.02 0.03 0.04 0.05 

(tfyy)?=o.5,>!=0 D t 

(<Syy)$r1 , *l = 0 

'yy > { - i , 

-0.6 

-0.8 

-1.0-
Fig. 5 Effect of variation of thickness on (ffyy)t_0 5 0 a n d ( 
, = 0 f o r m 0 = 0 a n d m 0 = 10 " " ' 

21 x x 21 y and variable thickness with a rectangular hole of 
dimension 2lx x 21y' as a case of a multiply connected region 
as shown in Fig. 2, assuming that the variable-thickness plate, 
initially at the same uniform temperature T0 as the 
surrounding media, is heated by an abrupt temperature 
change Tu of the inner surrounding temperature and that 
there is a heat loss into the surrounding medium at constant 
temperature T0 on the outer boundary and the upper and 
lower surfaces of the plate. As an example of such small 
thickness and small variation of thickness in which the 
method of analysis to the plane-stress thermoelastic problem 
of constant thickness can be extended, we took the following 
linearly decreasing thickness in both the x and y directions 
from the inner boundary of constant thickness DQ toward the 
outer boundary: 

D = D0-Dx(x-i;), D=D0-Dy(y-i;) (20) 
where Dx and Dy denote the constant gradients of thickness in 
the x and y directions, respectively. We also took the half 
length lx and the inner surrounding temperature Tn as the 
reference length /„ and the reference temperature Tlt 
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m0=0 

Fig. 6 Effect of variation of thickness on ayy on x axis (m0 = 0) 

Fig. 7 Effect of variation of thickness on axx on y axis (mo = 0) 

respectively, and used the following values in the numerical 
calculations of the temperature and plane thermal stress: 

Jy=iy/ix=o.s,i, 7; = / ; / / , = o . 5 , 7 ; = / ; / / * 
= 0.25,0.5, D0 =D0/lx = 0.05, Dx=Dy = 0, 
0.015, 0.03, 0.05, m10=hwIx/\=l, 
mu=hulx/\ = oo,m0=0,0.1,1.0,5.0,10, Tl0=0, fn=l 

The spatial and time intervals for all cases considered were 
taken to be smaller than A£ = Aij = 0.03125 and Ar=0.0025. 
For this numerical example, neither results obtained by exact 
solution nor by finite element method have so far been 
reported. So, to verify the effect of mesh size on the con
vergence, the calculation was also done with mesh systems of 

0.5 0.6 0.7 Q8 0.9 1.0 

Fig. 8 Effect of Biot's number on upper and lower surfaces on tem
perature distribution on x axis (D, = 0.03) 

T=0.005T=Q05 

-1.01-
Fig. 9 Effect of Biot's number on upper and lower surfaces on »yy on x 
axis(D( =0.03) 

A£ = AT7 = 0 . 0 5 , Ar = 0.0025 and A£ = A?/ = 0.025, A T = 0 . 0 0 2 . 
The absolute values of oyy = oyy/[Ea(T1 - T0)] at J = 0.5, 
T/ = 0 and T = 0 . 0 0 5 of Fig. 4 obtained by taking the mesh 
systems of A£ = A»? = 0.05, A£ = A?/ = 0.03125 and 
A£ = ATJ =0.025 were 0.699, 0.721 and 0.726, respectively. It 
can be seen from these results that the mesh system of 
A? = Ar/ =0.03125 and AT = 0 . 0 0 2 5 produces satisfactory 
results. 

First, Figs. 3 and 4 show the distributions of the tem
perature and ayy, respectively, on the x axis in the square plate 
((,, = 1,7; = 7 ; =0.5). It is noted from Fig. 3 that the tem
perature distribution during the short period after the abrupt 
change in the inner surrounding temperature is roughly the 
same whether the variation of thickness in both the x and y 
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directions is taken into account or not, but the temperture 
increases become much larger and the temperature gradients 
become considerably smaller with an increase in the gradient 
of thickness D,=Dx=Dy at the approximate steady state 
T = 0 .1 . As illustrated in Fig. 4, the absolute values of the 
compressive thermal stress ayy at the inner boundary become 
smaller with an increase in the gradient of thickness because 
the increase in the gradient of thickness D, causes a drop in 
the temperature gradient; while the values of the tensile 
thermal stress ayy at the outer boundary become larger with 
the increase except for the values at T = 0.1. Figure 5 shows the 
effect of the gradient of thickness on ayy at £ = 0.5, r] = 0 and 
£ = l, r\ = 0 for the two cases of the Biot's number on the upper 
and lower surfaces. It is clear from this figure that the effect 
of the gradient of thickness D, on ayy becomes smaller with an 
increase in the Biot's number on the upper and lower surfaces 
because a change in the temperature gradient on the x axis for 
the large value of Biot's number becomes quite small 
regardless of the value of D,. Figures 6 and 7 show the effect 
of the gradient of thickness on_j„ on the x axis and oxx on the 
y axis in the rectangular plate (ly = lx = 0.5, // = 0.25) for the 
thermally insulated case of the upper and lower surfaces, 
respectively. It is noted from these figures that both ayy on the 
x axis and axx on the.y axis in the rectangular plate are smaller 
than dyy on the x axis in the square plate illustrated in Fig 4, 
but the effect of the gradient of thickness on the distribution 

of the these stresses is quite similar to the case of the square 
plate. Finally, Figs. 8 and 9 show the effect of the Biot's 
number of the upper and lower surfaces on the distributions 
of the temperature and ayy on the x axis in the square plate for 
the case of D, =0.03. It is of practical interest to note that the 
effect of the Biot's number on the upper and lower surfaces of 
the perforated plate of variable thickness on the distributions 
of the temperature and ayy on the x axis is much more im
portant than the gradient of thickness and that as the value of 
the Biot's number m0 increases, the absolute value of ayy at 
the inner boundary apparently increases. 
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High Shear Stresses in Stiff-Fiber 
Composites 
Elastic analysis of two parallel fibers in an infinite matrix subjected to longitudinal 
shear leads to some exact results for stress concentrations between the fibers. High 
shear stresses occur when stiff fibers are in close proximity. 

Introduction 

Unexpectedly low strengths in longitudinal shear have been 
reported for brittle-matrix, fiber-reinforced composites, and 
it has been suggested that this might be explained by high 
stress concentrations in the matrix between neighboring fibers 
[1]. In 1967, an analysis of two elastic fibers in an infinite 
elastic matrix under longitudinal shear was presented by 
Goree and Wilson [2], and for the case of rigid fibers in close 
proximity high shear stresses were indeed found numerically. 

In this paper the Goree-Wilson solution is rederived suc
cinctly in a way that leads to the deduction of some exact 
results for matrix shear stresses near elastic as well as rigid 
fibers. Key results will first be displayed, followed by the 
analysis. 

Results 

We consider two identical elastic fibers of diameter d 
embedded in an infinite elastic matrix (Fig. 1) subjected to 
shear loading TXZ = T0 at infinity. The fiber shear modulus is 
GF, the matrix modulus is GM, and the separation distance 
between the fibers is s. 

(/') For rigid fibers (GF = oo) the average matrix shear 
stress fxz between the fibers is given exactly by 

fxz/70=V(2+7y77 a) 
where 

e=sld 

(ii) If the fibers are not rigid but touch each other (e = 0), 
the stress rxz at the point of contact satisfies 

T « / T 0 = G F / G A (2) 

(Hi) Numerical results for the average stress con
centration TXZ/T0 between the fibers as a function of e are 
shown in Fig. 2 for several values of GF/GM. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, April, 1984. 

On the basis of their numerical calculations Goree and 
Wilson surmised that the maximum shear stress between the 
fibers would become infinite for rigid fibers approaching zero 
separation. This is corroborated by the exact result (1), which 
shows that the shear stress becomes infinite like the reciprocal 
square root of the separation distance. The exact result (2) 
shows that an intense stress concentration can also occur for a 
finite fiber modulus that is substantially higher than that of 
the matrix. On the other hand, the curves in Fig. 2 indicate 
that such stress concentrations may be very considerably 
diminished when the fibers do not quite touch. Nevertheless, 
fiber contact or near contact may well be a frequent oc
currence in high-fiber-density composites, and the consequent 
shear stress concentrations could still be responsible for the 
reported low shear strengths of brittle-matrix composites. 

Analysis 

As in [2], we can write the longitudinal displacement w as 
w=(r0/GM)Ref (3) 

where / is a complex function of Z = x + iy, piecewise 
analytic within the matrix and the fibers. The shear stresses 
are given by 

df 
7XT, lTyz ~ T0 ,y 

= XT0 — 

in the matrix, (4a) 

in the fibers, (4b) 

Fig. 1 Two-fiber configuration 
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Fig. 2 Average interfiber shear stress versus fiber spacing 

.5 

where X = GF/GM. Single-valued displacements, and the 
absence of net force on each fiber imply that/is single-valued 
in the matrix as well as the fibers. Without loss, let w(0, y) = 
dw/dy (x, 0) = 0 and pick Im /(0) = 0; then, by symmetry, 

/ ( Z ) = / ( Z ) = - / ( - Z ) (5) 

The prescribed loading gives 
f~Z for IZI-oo (6) 

Let/M, fF denote the values of/in the matrix and the right-
hand fiber, respectively. The conditions of displacement and 
traction continuity along the fiber-matrix interface then imply 

RefM + i ImfM=RefF + i\ImfF (7) 

along the fiber boundary. 
Let the fibers have unit radius and separation distance 2e. 

Following [2], map the Z-plane (Fig. 3d) into the f-plane (Fig. 
3 ft) via 

r=(Z-«)(Z+«)-'' 

z^a + no-fr1 

where 

a = Ve(2 + e) (8) 
This maps the right-hand fiber into the interior of the circle 
C| of radius 

P = ( f l - e ) ( f l + e ) - ' (9) 

and the matrix is transformed into the annulus p < I f I < 
p "', bounded by C{ and C2. 

In accordance with (6) we can write 

/ M = « a + n( i -D- 1 +gM(f) (io) 
where gM(t) is analytic in the annulus. By the Cauchy in
tegral formula 

where 

Sl(f) 

* * ( f ) =*ltf) + f t ( J") 

gM(o)da 1 
2m c2 

82(f) = -
1 

2 717 

gM(a)da 

<7-r 

(11) 

(12) 

The symmetry conditions (5) imply gM(f) = gM($) = 
- £ M U / 0 , and it follows directly from (11) and (12) that 
*i(f) =*i(J), iiin = ft(», andg.tf) = -gi( l / f) , with 
gi(0)=g2(°°) = 0. Hence 

•sOiT 

Z = x + i y 

P05 

(a) 

Fig. 3 Mapping geometry 

(13) /*=f l ( i + o ( i - » - ' + * i ( r ) - * i ( i / » 
Note that gi (f) is analytic for I f I < p ~'. 

In the f-plane, denote /p by the function gF (f) = g> (f) 
analytic for I f I < p. Then the interface conditions (7) may be 
written as 

«t(i + DO - rr1+(i + Da - fr1]+g> («+gi(f) 
-g i ( l / f ) -g i ( l / f ) =gF(t) +gf(t) (14a) 

^ ( l + n a - n ' - a + Do-n-'i+g^n-g^f) 
-g 1 ( i / r )+g 1 ( i / f )=x [g f ( r ) -g f (D] (Hft) 

on C,. Since f = p2/f on C ,̂ we get 

ffl(i + no - n~l +gi (o -gi(fV)-g^(r) 
= -a(f+P2)(r- io

2)- 1 +gi(l/f) - « i V ( f ) +g^(P2/f) (i5fl) 

a(i + W-0-l+gM)+gl(VP2)-h;F(n 

=«(f+p 2 ) ( r -P 2 ) - ' +g i ( i /n + g i ( p 2 / f ) - ^ ( p 2 / r ) (15ft) 

for I f I = p. 
The left and right-hand sides of (15«) are analytic for I f I < 

p and I fI > p, respectively. Consequently, each is the same 
entire function, namely the constant 

i-a+gF(0)] (16) 

approached on the right for f — 00. But the left-hand side of 
(15a) equals [a — gF(0)] for f = 0; hence 

gF(0) = a (17) 
This immediately provides the exact result (1). The average 
matrix stress between the fibers is given by 

f„ = GMw(e,0)/e 

or 
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fxz/T0 = gF(-p)/e (18) 

But in the case of rigid fibers, gF (f) = gF(0) = a, and (1) 
follows. 

A similar analytic-continuation argument may be applied to 
equation (15b), each side of which must equal «(1 - X). From 
the left sides of equations (15) we then find that 

fgi(n-gitt/P2)-[gF(n-a] =-2«fa-rr' 
(19) 

:i (f) + ^ ( f / P 2 ) - X k f ( f ) -a] = -2af t l - ft 

The series solutions 
oo 

j?i(f)= I X r 

follow, with 
r a „ = 4 « [ A + l - ( A - l ) p 2 " ] - 1 

L*„ =2(X- l)ap2"[X + 1 - ( X - IV 2 "]" 1 

(20) 

(21) 

(22) 

(23) 

The interfiber average shear stress can now be calculated 
directly from (18), but alternative forms are available. With 

a = ( X - l ) ( X + l ) - ' (24) 

each an can be expanded into a power series in a, and the 
summation over n in (20) can be performed to give 

g F ( f ) = 2 ( X + l ) ~ ' Y, [(\-P2m+i)/(\+P2m + l)W (25) 

Since alt = (1 + p)/(l - p ) , we find from (18) that for e - 0, 
oo 

f„ /T 0 =2(X+l) - 1 l im £ [ ( l -p 2 ' " + 1)(l-prV" 
f~l m = 0 

= 2(X+1)- ' £ ) (2/w + l)am 

Using (23) and (21) here, expanding into powers of a, and 
inverting orders of summation, leads to 

oo 

fxz/T0 = l+2(l+p)2 ]j o:'" + 1p2'" + 1( l+P 2 ' " + 1 )" 1 ( l+P 2 ' " + 3 ) " 1 

m = 0 

(26) 

This also gives X for p — 1. Equation (26) is convenient for 
calculating TXZ/T0 for arbitrary values of X and e, and was 
used to generate Fig. 2. (Since a — 1 for X — oo, the in
teresting identity 

oo 

X) p 2 " , + i ( i + p 2 " , + i ) ~ ' ( i + p 2 m + 3 ) - ' = p ( i + p ) - ' ( i - p 2 ) - 1 

m = 0 

follows from equations (1) and (26)). 
Similar manipulations provide the asymptotic result 

r « / r 0 = X [ l - ( X 2 - l ) e + . . .] 

for finite X and small e, which suggests the very rapid decrease 
in the stress concentration with small fiber separation seen in 
Fig. 2. Unfortunately, an approximation for fxz that is 
uniformly valid in the vicinity of X = oo and e = 0 has not 
been found. 

Finally, we note that the rigid-fiber problem is 
mathematically equivalent to that of uniform potential flow 
past two cylinders, with no circulation around either cylinder. 
The analogue of T0 is the velocity V0 in the y direction at 
infinity, and the average velocity between the cylinders 
becomes Vy = F0V(2 + e)/e. When the cylinders actually 
touch, there is, of course, no flow between them, but the 
velocity nevertheless becomes infinite for e — 0. 
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= X 

as stated in equation (2). 
We could also use the fact that gF = fM at f = — p to get, 

via (13) and (18), 

txz/T0 = l+[gl(-p)-gl(-\/p)}/e 
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Theory of Orthotopic and 
Composite Cylindrical Shells, 
Accurate and Simple Fourth-Order 
Governing Equations1 

A pair of complex conjugate fourth-order differential equations that govern the 
deformation of orthotropic circular cylindrical shells is presented. As shown in the 
paper, this pair of equations is as accurate as equations can be within the scope of 
the Kirchhoff assumptions. Also presented for the first time are several pairs of 
accurate and simple fourth-order equations which can be systematically and ex
plicitly deduced from the previously mentioned pair of equations. Because of their 
accuracy and simplicity, these simple equations are of practical importance. The 
advantage in applying those fourth-order equations presented herein is that their 
solutions can be easily found in simple closed forms. This considerably simplifies 
calculations for solving problems of orthotropic and composite cylindrical shells as 
well as isotropic shells as a special case. Unlike other equations known in the 
literature, their general solutions remain unknown because of the algebraic com
plexities involved. The present method of deducing simple fourth-order equations 
improves upon the one used for isotropic shells in the first author's previous paper 
entitled 'Accurate Fourth-Order Equations for Circular Cylindrical Shells," 
Journal of the Engineering Mechanics Division, ASCE, 1972. 

Introduction 

Considerable attention has been devoted to the study of 
general shell theory. Literature on this subject is quite ex
tensive. In contrast, relatively little work has been done on the 
formulation of the basic equations for orthotropic cylindrical 
shells, although they are frequently employed as structural 
elements in industry [1-7]. Examples of such shells include 
laminated composite, reinforced, perforated, and stiffened 
cylindrical shells whose material behavior can be considered 
as orthotropic. Composite cylindrical shells [4-7] constitute 
an example of great practical importance in recent years. 

As is known in the literature, the classical shell theory is 
based on the same basic asumptions employed in the theory of 
thin plates, known as Kirchhoff assumptions. In developing 
the theory of thin shells, further simplifications or ap
proximations beyond these basic assumptions have been 
introduced since the inception of Love's first approximation. 
As the abundance of literature indicates, many versions of 
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shell theories have been formulated, each depending on 
different versions of the various approximations. This has 
confronted engineers as well as researchers with a con
troversial problem with regard to the consistency of the theory 
and accuracy of the resulting equations. Many sets of 
resulting equations have been proposed for isotropic shells 
[8-12] and especially, due to their importance in application 
and the fact that they display nearly every type of behavior 
found in general shell theory, for cylindrical shells [8-16]. 
Many other publications are readily available. 

As for orthotropic cylindrical shells, two types of basic 
equations, corresponging either to Fliigge's or DonnelPs 
equations for isotropic shells, have been formulated in the 
literature [1-7]. In either case, a resulting single eighth-order 
differential equation may be deduced. However, the eighth-
order equation for orthotropic shells is more complicated 
than the corresponding ones for isotropic shells. A common 
difficulty with these eighth-order equations in isotropic or 
orthotropic shell theory is that their general solutions remain 
unknown because of the algebraic complexities involved. 
These unnecessarily complicated equations hamper the 
analysis and hence bury essential features beneath a mound of 
algebra. For orthotropic cylindrical shells, even the simpler 
eighth-order equation based on Donnell approximations as 
seen in [2] suffers from the same complexity. In computing 
the characteristic roots arising from solving these eighth-order 
equations by means of eigenfunctions, it is found that the two 
large roots and the two small roots in the same set of solutions 

736/Vol. 51, DECEMBER 1984 Transactions of the ASME 

Copyright © 1984 by ASME
Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



for the characteristic equation are far apart and of different 
orders of magnitude. This makes the computation more 
tedious and time-consuming, even with present-day numerical 
techniques. Using an approach identical to that of Donnell 
[13], a fourth-order equation is presented in [3]. Since in 
Donnell's derivation a number of terms in the relationships 
between the changes of curvature and twist and the 
displacements, and in the relations of stress resultants and 
moment resultants in terms of displacements are simply 
neglected, it cannot be easily followed. It is also difficult to 
visualize the effect of so many reductions on the final 
solutions [14, 15]. Furthermore in [3], no justification is given 
for replacing the shear modulus by other material coef
ficients. In addition to the shortcomings cited in the 
foregoing, only a specific numerical problem is treated in [3]. 
This signifies that a general investigation of the accuracy of 
the fourth-order equation is still lacking. This paper attempts 
to provide such an investigation as well as among other 
things, a systematic and explicit deduction of the fourth-order 
equation. 

Recently a general theory for thin isotropic shells, which 
makes no simplifications or approximations beyond a clear 
set of fundamental hypotheses, was developed by Markov 
[17]. Other advantages of the method of derivation as applied 
to shells of general curvature have also been illustrated in [17]. 
Results obtained herein illustrate that the method developed 
in [15, 16] can also be useful for orthotropic shells. 

In the present paper, a pair of complex conjugate fourth-
order partial differential equations that govern the defor
mation of orthotropic circular cylindrical shells is proposed. 
This pair of equations is deduced from a set of basic equations 
that is based on the following Kirchhoff hypotheses: 

(«) The transverse normal stress is negligibly small, and 
(b) normal-to-the-middle surface of the shell remain 

normal to it and undergo no change in length during 
deformation. 

The set of basic equations (8) is exact in the sense that in 
deriving these equations all terms have been retained without 
introducing further simplifications or approximations beyond 
these fundamental hypotheses. Even those terms that are of 
higher-order are kept since they can be summed in closed 
form. 

Because the pair of equations deduced herein is complex 
conjugates, only one of the equations needs to be considered. 
Further, closed-form solutions of the characteristic equations 
that arise from solving the pair of governing equations by 
means of eigenfunctions can be easily obtained. The technique 
used is an extension of the one for isotropic shells presented in 
[15, 16]. From the pair of equations, a number of simplified 
fourth-order governing equations can be systematically and 
explicitly deduced, as shown in the paper. These fourth-order 
equations for orthotropic cylindrical shells are new in the 
literature and of definite technical importance because these 
equations can be easily solved in closed forms and yet retain 
practically the same accuracy as the original eighth-order 
equation. 

Basic Equations 

In accordance with the fundamental hypotheses stated 
previously, the following basic equations can be deduced for 
orthotropic circular cylindrical shells. Let a be the radius of 
the midsurface of the shell, x, y, z the axial, circumferential, 
and radial coordinates, and a, & the dimensionless midsurface 
coordinates along lines of curvatures (a = x/a, B = yla). The 
three displacement components ua,up, and uz of an arbitrary 
point of the shell can be expressed in terms of midsurface 
displacements u, v, and w as follows [8,16] 

(1) 

where 
1 / dw \ 1 dw 

dp / a da 

The stress-strain relations for orthotropic materials [5, 18, 19] 

E2 Ex 
-(ec< + i '1e /3), 

1 VlV2 

-(v2ea + es w 1 

1 - "i v2 

Ta$ = Gea/i (2) 
where E^, E2 are the moduli of elasticity along the principal 
directions a and B, respectively, G is the shear modulus that 
characterizes the change of angles between principal direc
tions a and B, vl = i>pa is the Poisson's ratio that charac
terizes the decrease in a-direction due to tension applied in /in
direction, and v2 = va0 is the Poisson's ratio that charac
terizes the decrease in /3-direction due to tension applied in a-
direction. Among these material constants there exists the 
relation [5,18, 19]: 

E{vi=E2v2 (3) 
The components of strain at an arbitrary point of the shell are 
related to the midsurface displacements by [8, 15,16] 

1 (du z d2w\ 1 (dv \ 

a \da a oar / a \oB / 

a(a + z) 

(d2w \ 
(4) 

1 r du dv z 

a + zidB da a 

• ( ; ) ' ( 

+ - X-r-

Z / dv 

\ d a 

dv 

da 

d2w \ 

' ~da~d~p) 

d2w \ 1 

dad/3/J 
The bending (?/„, -q&) and twisting (r) strains are 

1 d2w 1 (d2\ 
Va=~ Vp 

1 /d'w \ 
= ~72\W+W)' 

l /du dv d2w\ 
T~ ~2xt2\dll~~da+ daTp) ( 5 ) 

Let h be the wall thickness, K{, K2 the extensional rigidity, D{ 

and D2 the flexural rigidity, 

* , = -
E,h 

\-vxv2 

and define 

K, 

k= 

E2h 

1 - "i v2 

h2 

A = 12*. 

G ( l - * , e 2 ) 

h2 

2 12 2 

(6) 

(7) 
2?, ' Ex 

Let Na and W^ be the normal stress resultants, Sa and Sp the 
shear stress resultants, M and Mp the bending moments, Ma(3 

and M(ja the twisting moments, and Qa and Qp the transverse 
stress resultants [15]. These are stress resultants (N, S, Q) and 
couples (A/) per unit length of the middle surface and are 
related to the midsurface displacements through the stress-
strain relations as 

^ Kt [du rdv \ . d2W\ 

„ K2 Vdv du , / d 2 w \ 1 

„ _Ghrdu dv 2/ d2w dvyi 
a-VLd/3 + 3 a - C \d~a~dB~d~a)\ 

du 

Gh fdu dv , 

a LdB da 

dadB 

d2w dwN 

+ 
/ d'w du\ 1 

Ua = U + Z0)p, -- v — zua, uz = w 

Dx\du 
M"=-^ida+Vl 

dv 

d~B' 
( 

•dB 

d2w d2w 

Vda2 + " ' d0-
dzw\l 
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D2 r / 3 2 w \ d2wi 
(8) 

AS
 Ghi ( dv d2w \ 

da~d~p)' 

MR„ = 
r2 1.3/3 

dv d2w • (du d2w 
+ 2^-_ +5( — + dad/3 

d2u d2u , 

12a2 L 3/3 da 

^ a a3 1.3a2 ""•' ' "3/3 

a3vf a3w -| 

„ D2 r ki d2v /t , / 3 3 w dw\ 

/du d2w \~| 
36 dadB, 

d2v 

3a3/3 

<2T*") 
33w 

da2 dBl 
1 

in which 

12a2 

and 

_ (tanh-'V3c-V3c) 
5 = 

V3-

= 9 c 2 [ i + i ( V 3 c ) 2 + ^ ( V 3 c r + ] . 

The equations of static equilibrium are 

3JV„ dSg 

dp 3a 

N„- 9Qa 

3a 
9Gj 
9/3 

-aZ = 0 (9) 

3M. a/3 3M« 

3a 
-aQB=0, 

3M«„ AM, 
- - a G a = 0 

3/3 ~~p "' 3/3 3a 

in which X, Y, and Z are surface loads per unit area in x, y 
and z directions, respectively. 

Pair of Accurate Complex Conjugate Fourth-Order 
Equations for Normal Deflection 

Substituting equation (8) into equation (9), a system of 
three differential equations is obtained for the three basic 
functions. This system is presented in Table 1 and possesses a 
symmetrical structure. The three linear partial differential 
equations with constant coefficients can be reduced to a single 

differential equation of higher order that is more convenient 
to solve and/or analyze with regard to the present problem. 
These three equations presented in Table 1 will be considered 
as algebraic equations in u, v, and w having coefficients that 
are constants (elastic constants and c2) and the symbols of 
differentiations. Let D„ be the 3 x 3 determinant of Table 1 
and calculate its cofactorsDu , Dl2, • • • .D33.Let 

u=Dn<t>i, v=Di2<f>i, w=Da<j>i (Sumon/, /=1 ,2 ,3 ) 

(10) 

and substitute these expressions in the three equations in 
Table 1. Then, in accordance with the theory of linear algebra 

D04>i + L^La2X 0> ( ; = i , 2 , 3 ) 
E,h 

(11) 

are obtained, in which Xx = X, X2 = Y, X3 = Z. If only a 
normal surface load Z is applied on the shell, 4>\ and </>2 can be 
set equal to zero in equations (10) and (11). Calculating 
cofactors Dn, Di2, D}3, and D0 from Table 1 and replacing 
03 by 4>/k\, the following are obtained from equations (10) 
and (11) 

32 

«= 7- A:—-J>, 
da <~ 

v = 

3a 

+ c2 

3 i 

3/3' 

dp2 

34 

3a2 

r 3" 34 

I 
dp2 -(k-Piki-rf) 

Uda2dp2 

da1 

]> 

r a4 a4 

+ 2c2[—i+(2ki+P]): .3a4 

34 1 

3a23/3: • ] ) • 

r 9 i 
L3a4 kt 

^D04>={ 
3au 

+ 2kK 

+ 2K 

3a2 a/32 

38 

3/34 + £ — ]< 

+ Ar, 

da2 dp6 

d6 

da6dp2 +kl daAdp* 

+k2w+2v 
' 3 a 6 

3/36 L c2 

• da4 dp'' 

3 6 Y{k-v\) 

9a23/34 

+ 2k(K-vi) 
34 

+ Ak 

d 

'M\d^ 

2ZR2 + / r 2 i S " j ^ - ^ 3a2a/3: dp* 

(12) 

(13) 

(14) 

Table 1 

Loads 
terms 

da2 -kt[l+c2(l + 8)]-

(*i + " i ) 
3a3/3 

s , r s 3 a3 I 
c n - - * i d + !) 5-

da L3a3 a«a(32J 

(*l + " l) 
dad/3 

d2 , a2 

:—T+ki(l+3c2)—r-
d/s2 da

2 

a , a3 

' C2(,3kl + K l ) r 
a/3 a«23(3 

3a 

a 

, r a3 a3 -1 
- c 2 —5--AT,(1+5) r-

Laa3 aaa/32J 

A: C2(3AT! +-J' I) 

a/3 a«2a/3 

, r a4 

£ + c2 -T+<4*,+2*1+Mr,) 

\-V\V2 , 
+ — «2X 

£•,/! 

\-vxv2 2 

£•,/! 
a z y 

1 - "1 "2 2 

o Z 

= 0 

3" / 3Z \ 2 1 
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3a23/32 V3/32 / J 
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Table 2 

Species 

Glass/epoxy 
Boron/epoxy 
Graphite/epoxy 
Douglas-fir 

Mechanical properties of materials 

k=E2/E, 

0.3333 
0.1000 
0.0250 
0.0500 

GIEX 

0.1666 
0.0333 
0.0125 
0.0780 

"i 

0.0833 
0.0300 
0.0063 
0.0220 

"2 

0.2500 
0.3000 
0.2500 
0.4490 

in which 

2k~i 
K=^-(l-viv2) + 2ku k2=6k + 4vl(K-4kl)-8v2 (15) 

The constant coefficients in equations (12), (13), and (14) may 
contain coefficients higher than those shown (of the order c2 

or higher). These coefficients have been omitted since, in thin 
shell theory, hi a < 1/20, thus c2 < 2 x 10 ~4 is a very small 
number. The complete expression of D0 is given in the Ap-' 
pendix. Comparison of the magnitude of the coefficients of 
the terms that were omitted with the coefficients of the terms 
(having the same partial differentiations) which were retained 
in equations (14), (13), and (12) reveals that these omitted 
terms are truly of smaller orders of magnitude. This fact has 
been further verified through the actual computation of these 
coefficients using available numerical data drawn from elastic 
constants of many orthotropic materials. In Table 2, the 
elastic constants of a few materials are presented. Thus, 
equation (14) is an accurate governing equation for or
thotropic cylindrical shells because this equation is derived 
from the basic hypotheses without introducing further ap
proximations in its derivation except that, as just stated, some 
negligibly small terms have been omitted. These small terms 
have been totally dropped in all the known equations of 
orthotropic shells. In some publications, even certain terms in 
equation (14) are neglected. In the following analysis, some of 
these negligibly small terms will be retained so that equation 
(14) can be reduced to a pair of fourth-order complex con
jugate equations. This not only tremendously simplifies 
calculaton of the roots of the characteristic equation that arise 
from solving the equation by separation of variables but it 
also facilitates obtaining solutions in simple explicit forms. As 
stated previously, finding solutions to equation (14) in explicit 
forms is almost prohibitively difficult due to the algebraic 
complexity involved. In addition to keeping some small terms, 
the following approximate relation as given in [20, 21] is 
employed: 

G 
4KE? 

(16) 
2(l+s/vip2) 

vx v2 are geometric mean values for the in which 4E\E2 and -
modulus E and Poisson's ratio v, respectively. It should be 
noted that unlike [20], in [18, 23] relation (16) is presented 
only as a special case and no justification or proof is given to 
establish its validity. From equations (3), (7), (15), and (16), 
we obtain 

2/fc1=Vfc(l-- K=2(2kx + vi) = 2Vfc, k2 = 6k (17) 

If, in equation (14), the coefficient k2 of the middle term 
98/3a4d;64 (only in this term) is replaced by 6k (17) and some 
of these omitted small terms are kept as explained previously, 
then from equations (13) and (14), the governing differential 
equation for normal deflection ve may be written as 

"4 r a4 1 d4 a4 r a* i LLw= K T~, + -r^-2v\k^~v\) 
D, Ldor k. 

da2dp2 

in which 

a4 a4 

L da" +Kda2dl32 

+ k 

+ k\ 

d/3' Y (18) 

'd*_ d2 _a2_-
+ da2+W' 

+i 
r i d 2 / a4 , 

LC] ocr \ dor da2 dp 

+ k5 dp + *., 9j3' 
+ AT, 

82 

da2/} 
\] (19) 

and L is the complex conjugate linear differential operator of 
L,i = V^-l , and 

C l = ^ ( l - , 1 , 2 ) ' *3 = " . - * , k^\(k2-2kK-2k), 

(20) 

k5=k(K-k-ui), k6=~(4k-k2-^v\) 

K, k, klt and k2 in equations (18), (19), and (20) have been 
defined previously in expressions (7) and (15). As will be 
shown later, the replacement of coefficient k2 of the middle 
term in equation (14) by 6k has only an insignificant effect on 
the solutions of the problem. Table 3-7 show that the dif
ferences between either the real or imaginary parts of the 
characteristic roots of the homogeneous equations (14) and 
(18) are negligibly small (less than 0.5 percent). In equation 
(19), it is seen that the last terrn c{k6 (d2/doi2) is very small as 
compared with the term (\/ci)/(d

2/da2) and hence can be 
dropped. This should not yield any noticeable effect on the 
accuracy of the equation as will be further elaborated later. 
The homogeneous solutions of equation (18) are obtained 
from 

Lw = 0, Lw = 0 (21) 

From equations (12) and (13), we can express u and v in terms 
of w [15]. Equations (18) reduces to the same governing' 
equation for isotropic cylindrical shells as deduced in [15]. 
The terms of eighth-order derivatives in equation (14) can be 
written as 

r -
Ldx4 

+ 2(2*1+''}W + k-
'By "J Lax4 

+ T«- v]-2vxk{) 
d4 34 

~dx2dy2 +k8y~* 
} , (22) 

Having obtained the preceding expression, we can readily 
obtain the orthotropic plate equation from (14) and (13) as the 
radius of the shell goes to infinity: 

r a4 a4 d41 z 

LaF+2(2*'+*'W'+ 'W=A {23) 

Using the relation (16), equation (18) can also be reduced to 
the preceding orthotropic plate equation. 

Solutions by Eigenfunctions 

.It may be shown that homogeneous equation (21) and 
suitable boundary conditions are satisfied by making use of 
the following solution when the eigenfunctions are 
trigonometric along a generator: 

w = epl3cosna (24) 

in which n = (m-Ka)/(l), m is an arbitrary integer, /represents 
the length of the shell, and e is the base of natural logarithms. 
When the eigenfunctions are trigonometric in the cir
cumferential direction, w can be taken as 

w = ePacosnj3 (25) 

in which n is a real number. It is an integer value when the 
cylinder is closed and a noninteger value when the shell is 
open. Substituting expressions (24) and (25) into the gov
erning equation (21) yields characteristic equations for the 
determination of the roots p. Four complex roots are obtained 
and the other four roots are the complex conjugate numbers 
to these four roots. The characteristic equations are quadratic 
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Table 3 Characteristic roots (w = ep^cosna) (boron/epoxy) 

1/c Equation P\,Pi P3,P4 

50 0.001 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

0.009297 
0.009278 
0.009278 
0.008900 
0.008872 
0.008872 
0.103515 
0.103496 

+ 0.008429/ 
+ 0.008414/ 
+ 0.008414/ 
+ 0.008843/ 
+ 0.008871/ 
+ 0.008871/ 
+ 0.042850/ 
+ 0.042858/ 

0.000079+1.000000/ 
0.000079 + 1.000000/ 
0.000079+1.000000/ 
0.000079 + 0.999997/ 
0.000079 + 0.999992/ 
0.000079 + 0.999997/ 
0.042877 + 0.103450/ 
0.042869 + 0.103469/ 

50 0.010 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

0.093577 +0, 
0.093411+0 
0.093414 + 0 
0.089696 + 0 
0.089463 + 0 
0.089420 + 0 
0.328262 + 0 
0.327653 + 0, 

.083514/ 
083407/ 
083402/ 
087736/ 
088064/ 
088024/ 
135123/ 
135377/ 

0.007852+1 
0.007857 +1 
0.007857 +1 
0.007870 + 0 
0.007883 + 0 
0.007872 + 0 
0.135969 + 0 
0.135719 + 0 

.000139/ 

.000138/ 

.000138/ 
999889/ 
999372/ 
999839/ 
326220/ 
326828/ 

5000 0.100 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

3.217938 + 1. 
3.217917 + 1, 
3.217926+1, 
3.211572+1, 
3.217595 + 1, 
3.211551 + 1, 
3.282622+1, 
3.276528 + 1. 

376923/ 
376970/ 
376965/ 
380148/ 
377790/ 
380201/ 
351234/ 
353769/ 

1.331418 + 3 
1.331469 + 3 
1.331472 + 3 
1.329567 + 3 
1.332245 + 3 
1.329618 + 3 
1.359694 + 3 
1.357185 + 3 

.327954/ 

.327934/ 
327925/ 
333750/ 
.327594/ 
333728/ 
.262197/ 
.268280/ 

Table 4 Characteristic roots (w = epacosnf3) (boron/epoxy) 

1/c Equation P\,P2 P3,Pi 

50 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

2.802685 + 
2.803801+ 
2.803801+ 
2.796462 + 
2.805359 + 
2.805359 + 
2.805359 + 
2.805359 + 

808032/ 
809136/ 
809136/ 
814284/ 
805359/ 
805359/ 
805359/ 
805359/ 

50 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

2.939060 + 
2.945199 + 
2.945332 + 
2.853203 + 
2.948208 + 
2.862275 + 
2.948680 + 
2.862805 + 

2.664959/ 
2.671730/ 
2.671609/ 
2.758317/ 
2.669431/ 
2.749575/ 
2.670070/ 
2.750173/ 

0 
0 
0 
0 
0 
0 

0.058927 + 0.053359/ 
0.057446 + 0.055186/ 

5000 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

28.109116 + 27, 
28.109206 + 27, 
28.109254 + 27. 
28.075257 + 28, 
28.109475 + 27, 
28.076149 + 28. 
28.109477 + 27. 
28.076151+28. 

998002/ 
998089/ 
998038/ 
031950/ 
997827/ 
031060/ 
997829/ 
031062/ 

0.019553 + 0. 
0.019553 + 0. 
0.019553 + 0. 
0.019539 + 0. 
0.019563+0. 
0.019540 + 0. 
0.022589 + 0. 
0.022563 + 0. 

019495/ 
019495/ 
019495/ 
019509/ 
019485/ 
019508/ 
022500/ 
022526/ 

equations in p2; hence solutions can be easily found in closed 
forms. 

Simple Equations 

The accurate fourth-order equation (21) can be used to 
obtain a number of simplified equations which are new in the 
literature and are of importance in practice. Considering the 
actual values of elastic constants of various known or
thotopic materials and the smallness of c2, it can be easily 
shown that the last term in equation (19) c^k6 (d2)/(da2) is 
much smaller than the term \/cx (d2)/(da2), hence this term 
can be dropped in equation (19) as previously stated. When 
the same considerations and solutions by eigenfunctions are 
applied, terms with coefficients fc3, k4, and k5 in equation 
(19) can also be neglected because they are of a smaller order 
of magnitude in comparison with other terms that have the 
same partial differentiations in the equation. Dropping these 
terms in equation (19) yields the following simplified equation 

Lw 
r 34 

Lta4" +K 

+ 

a4 a4 

\da2 + d(32) a d w = 0 (26) 

which has practically the same accuracy as equation (14) (less 
than 0.5 percent difference as shown in Talbe 3-8). Following 
the same reasoning, the fourth term is small as compared with 
the last term \/cx (d2/da2) and hence has little effect on the 
characteristic roots. Therefore this term can be dropped in 
equation (26) and another simple equation 

a4 a4 a4 a2 / a2 

J-V L I- L i - i 

da2 
Lw- 4 +Kda2df32 

a4 a2 

a/?4 a/?2 <)w= o 
(27) 

is obtained. If the fourth term in equation (27) is also 
dropped, one obtains 

740/Vol. 51, DECEMBER1984 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 5 Characteristic roots (w = ep^cosna) (glass/epoxy) 

1/c Equation Pl.Pl Pl,P4 

50 0.001 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

0.006679 + 
0.006684 + 
0.006688 + 
0.006585 + 
0.006546 + 
0.006546 + 
0.088900 + 
0.088900 + 

0.006393/ 
0.006406/ 
0.006403/ 
0.006508/ 
0.006546/ 
0.006546/ 
0.036816/ 
0.036817/ 

0.000043 + 1.000000/ 
0.000043 + 1.000000/ 
0.000043 + 1.000000/ 
0.000043 + 0.999999/ 
0.000043 + 0.999998/ 
0.000043 + 0.999998/ 
0.036824 + 0.088881/ 
0.036824 + 0.088833/ 

50 0.010 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

0.067138 + 0 
0.067147 + 0. 
0.067149 + 0. 
0.066126 + 0, 
0.065748 + 0 
0.065748 + 0, 
0.281398 + 0. 
0.281363 + 0, 

063729/ 
063739/ 
063741/ 
064801/ 
065187/ 
065187/ 
116309/ 
116327/ 

0.004278 + 1, 
0.004284+1. 
0.004285 + 1. 
0.004285 + 0. 
0.004287 + 0. 
0.004286 + 0. 
0.116559 + 0. 
0.116545 + 0. 

000033/ 
000033/ 
000033/ 
999923/ 
999847/ 
999873/ 
280794/ 
280837/ 

5000 0.100 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

2.738576+1, 
2.738575 + 1, 
2.738617+1, 
2.738139+1. 
2.738452+1. 
2.738106+1. 
2.813983 + 1. 
2.813632+1. 

193250; 
193251/ 
193267/ 
193649/ 
193565/ 
193733/ 
163089/ 
163268/ 

1.132930 + 2 
1.132931+2, 
1.132948 + 2, 
1.132994 + 2, 
1.133228 + 2. 
1.133074 + 2 
1.165591+2 
1.165446 + 2 

884387/ 
884387/ 
884425/ 
884726/ 
884256/ 
884691/ 
807942/ 
808373/ 

Table 6 Characteristic roots (M; = epacos«/3) (glass/epoxy) 

1/c Equation Pl,P2 P3.P4 

50 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

3.773718 + 
3.775179 + 
3.775101 + 
3.757170 + 
3.779234 + 
3.779154 + 
3.779234 + 
3.779154 + 

784743/ 
.786174/ 
.786093/ 
801267/ 
.779234/ 
779154; 
779234/ 
779154/ 

50 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

3.860588 + 
3.862294 + 
3.862230 + 
3.833873 + 
3.867971+ 
3.856292 + 
3.868686 + 
3.857015 + 

3.696090/ 
3.697873/ 
3.697778/ 
3.725216/ 
3.692534/ 
3.703559/ 
3.693356/ 
3.704375/ 

0 
0 
0 
0 
0 
0 

0.078077 + 0.074538/ 
0.077861+0.074779/ 

5000 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

37.826903 + 37 
37.826902 + 37 
37.826113 + 37 
37.819909 + 37 
37.827467 + 37 
37.822116 + 37 
37.827470 + 37 
37.822119 + 37, 

757812/ 
757811/ 
757011/ 
.763213/ 
757273/ 
761010/ 
757277/ 
761013/ 

0.026479 + 0. 
0.026479 + 0. 
0.026478 + 0. 
0.026479 + 0. 
0.026485 + 0. 
0.026481+0. 
0.030582 + 0. 
0.030578 + 0. 

026442/ 
026442/ 
026441/ 
026440/ 
026436/ 
026438/ 
030525/ 
030528/ 

Lw 
a4 

~\do7 
+K a4 a4 

da2d/32 +kW 
(28) 

Unlike other equations presented in this section, the preceding 
equation is obtained by dropping a term in equation (27) 
without the usual presence in that equation of a similar term 
having a much larger coefficient with which, as a justification 
for the resulting simplification, the dropped term can be 
compared. A justification of this procedure would be 
provided if the accuracy of the equation could be established. 
In the final section, it is shown that this equation and its 
simplified form, equation (31), are inaccurate in the case w = 
ep® cosna and, for long shells, in the case of shells under 
distributed surface normal loads Z. Hence this procedure does 
in effect affect the accuracy of the equation. 

In deducing the fourth-order equations (21), (26)-(28) from 
the original equation (14) only the coefficient k2 of the term 
d8/9a4d|84 in equation (14) is replaced by its approximate 
value 6k (17). If the same approximation (17) is also used for 

the coefficient K in equation (19), then equations (26)-(28) 
become, respectively, 

(vt d2 
6 \ 
a1 / 

= 0 

Vk+k^: 
d/32 

JL 
da2 

)w = ( 

(V4 , : 

in which 

iL 
da2 

Vg = +V£ 
a/32 

E, 

V2 = 

92 \ „ 

iL iL 
da2 + a/32 

(29) 

(30) 

(31) 

and -1 i, 2a^J?>k(\ -viv?)' 

As deflections and stresses depend on the characteristic roots, 
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Table 7 Characteristic roots (w = ep^cosna) (graphite/epoxy) 

1/c 

50 

50 

5000 

n 

0.001 

0.010 

0.100 

Equation 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

(14) 
(18) 
(26) 
(29) . 
(27) 
(30) 
(28) 
(31) 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 

P\,Pl 
0.013357 +0.011729 / 
0.013303 +0.011695 / 
0.013304 +0.011694 / 
0.012591 +0.012548 / 
0.012572 +0.012568 /' 
0.012571 +0.012567 / 
0.123248 +0.050992 / 
0.123199 +0.051012 / 

0.135291 +0.115102 / 
0.134745 +0.114782 / 
0.134744 +0.114782 / 
0.127835 +0.123473 /' 
0.127839 +0.123844 / 
0.127646 +0.123680 / 
0.391769 +0.160409 / 
0.390212 +0.161058 / 

3.863535 +1.625197 / 
3.863438 +1.625419 / 
3.863425 +1.625414 i 

' 3.847469 +1.632947 / 
3.862934 +1.626713 / 
3.847456 +1.632978 / 
3.917688 +1.604092 / 

Pi, Pi, 
0.000158 + 1.000000/ 
0.000158 + 1.000000/ 
0.000158 + 1.000000/ 
0.000158 + 0.999994/ 
0.000158 + 0.999980/ 
0.000158 + 0.999994/ 
0.051051+0.123106/ 
0.051031+0.123155/ 

0.015698+1.000601/ 
0.015702+1.000595/ 
0.015702+1.000595/ 
0.015784+1.000040/ 
0.015855 + 0.998577/ 
0.015787 + 0.999991/ 
0.162270 + 0.387268/ 
0.161632 + 0.388826/ 

1.598486 + 3.928208/ 
1.598720 + 3.928115/ 
1.598715 + 3.928103/ 
1.593312 + 3.943178/ 
1.599938 + 3.927580/ 
1.593343 + 3.943165/ 
1.622698 + 3.872768/ 

(31) 3.902121 +1.161058 / 1.616319 + 3.888262/ 

Table 8 Characteristic roots (w = epacosn/3) (graphite/epoxy) 

1/c Equation Pi,Pi Pl,P4 

50 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

1.986613+ 1 
1.987408+ 1 
1.987389+ 1 
1.984245+ 1 
1.987400+ 1 
1.987387+ 1 
1.987400+ 1 
1.987387+ 1 

.988186/ 

.988976/ 

.988970/ 

.990535/ 

.987400/ 

.987387/ 

.987400/ 

.987387/ 

50 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(3D 

2.111661 + 
2.119304 + 
2.119284 + 
2.024353 + 
2.120223 + 
2.027557 + 
2.120533 + 
2.027929 + 

1.854832/ 
1.863529/ 
1.863523/ 
1.951096/ 
1.862897/ 
1.948014/ 
1.863358/ 
1.948434/ 

0 
0 
0 
0 
0 
0 

0.042075 + 0.036972/ 
0.040542 + 0.038953/ 

5000 

(14) 
(18) 
(26) 
(29) 
(27) 
(30) 
(28) 
(31) 

19.925442+19 
19.925560+19 
19.925434+19 
19.889481 + 19 
19.925642+19 
19.889795+ 19 
19.925643+19 
19.889797 + 19 

.822453/ 
822572/ 
822448/ 
858286/ 
822496/ 
857972/ 
822498/ 
857973/ 

0.013807 + 0. 
0.013807 + 0. 
0.013807 + 0. 
0.013791+0. 
0.013815+0. 
0.013791+0. 
0.015953 + 0. 
0.015924 + 0. 

013753/ 
013753/ 
013753/ 
013769/ 
013744/ 
013769/ 
015870/ 
015899/ 

the amount of difference between the characteristic roots of 
an equation under consideration and those of the accurate 
equation (14) should be an indication of the accuracy of the 
former. A comparison of the closeness of the characteristic 
roots of all the equations deduced herein with that of equation 
(14) is given in the final section. It is found that the charac
teristic roots of equations (26), (27), (29), and (30) are very 
close, well within engineering accuracy, to those of equation 
(14). Hence the replacement of k2 by 6k in equation (14) and 
K by 24k (17) in equations (26), and (27) can be justified and 
the accuracy as well as the validity of these equations (26), 
(27), (29), and (30) can be established. Equation (31) has the 
simplest possible form and hence may be, in some cases, 
preferred in practice. However, it is found herein that this 
equation and also equation (28) are not always as accurate 
and dependable as equations (26), (27), (29), and (30) and 
hence their use requires special care. The details are provided 
in the final section. By substituting the differential operators 
L given by equations (26)-(31) into the left-hand side of 

equation (18), the complete version of these equations in
cluding the load term can be written as 

a4 r a4 i , a4 

LLw = — I — + — (k-lviki -vj)-da4 

+ k-
34 

J D, 

da2 d(l2 

LnZ (32) 
a/34

 J x,, 

in which L represents any one of the six linear differential 
operators of equations (26)-(31). We rewrite equations (12) 
and (13) as 

u=Ll(j>, v=L24>, w=L04> (33) 

in which Ll,.L2, and LQ represent the linear differential 
operators as given on the right-hand side of equations (12) 
and (13). Having obtained the governing differential 
equations (26)-(31) for w, the other two displacements u and v 
can be obtained in terms of w from equation (33) as 

L0u=Li\v, L0v=L2w (34) 
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The Morley, Novozhilov, and Donnell equations for isotropic 
shells [15] are special cases of the equations (29), (30), and 
(31). The present method of deducing simple fourth-order 
equations improves upon the one used for isotropic cylin
drical shells in a previous paper [15] by the first author. 

Axially Symmetric Case 

In this case the following equation is obtained from 
equations (14) and (13): 

[(*?+")' + 
fc(l - "1 v2) w = (1 - "i vi)h , 

12£,c4 ' 
(35) 

which can be further simplified to 

r d2 V t ( l - y i y 2 ) i r d2 

c llda2 Ida1 

.VAr(l-i/iP2)i (\-vxv2)h 
w = (36) 

Problems of Thin Rings and Long Tubes 

When a ring is loaded by forces applied at the boundary, 
parallel to the plane of the ring, the stress components are 
zero on both faces of the ring. Such a state of stress is called 
plane stress. Following the procedures presented in [22], the 
following basic equations for bending of thin rings of or? 
thotropic materials are obtained: 

d2 w a2M 
4- w = 

dp2 E2I 

dv 
+ w = 0 (37) 

1 (dw \ 
1=a\dB'V) .dp 

where / = bh3/12, b = width of the ring, M i s the bending 
moment (M = bM2), and co represents the rotation of radial 
cross sections of the ring. For an infinitely large radius a the 
preceding equations coincide with that for a straight beam. 

When a long circular tube is under the action of lateral 
loads uniformly distributed along the axis of the cylinder, we 
have a state of plane strain. In this case, displacement along 
the axis of the tube u is zero and v and w are functions of P 
only. Following the procedures similar to the deductions of 
the basic equations for thin rings, the following basic 
equations for the bending of long tubes of orthotropic 
materials can be obtained: 

d2w _\2{\-vlv2)a
2M2 

dp2+w E~J? 

dv 

dP 
+ w = 0 (38) 

1 /dw \ 
>= - 1 v 1 

a \dP J 

Thus the basic equations of the present theory contain both 
ring bending and bending of long circular tubes as special 
cases. However, as stated in [16], the equations for bending of 
thin rings and long tubes cannot be deduced from the Donnell 
equations. 

Comparisons and Conclusions 

By means of computer, the relative accuracy of the dif
ferential equations presented previously can be further 
studied through numerical techniques. This can be done by 

calculating the numerical values of the characteristic roots of 
the equations and making a comparison of the closeness of 
these roots [16]. The accurate original equation (14) is used as 
the standard for comparison. The elastic constants of several 
typical orthotropic materials are collected in Table 2. Using 
these values, the roots calculated from homogeneous 
equations of (14) and (18) and equations (26)-(31) are ob
tained. Many roots for other orthotropic materials have also 
been calculated. Similarities in the properties of these roots 
for different materials can be observed. However, due to 
space limitations and the fact that the same conclusions can be 
drawn from different materials, only boron-epoxy, glass-
epoxy, and graphite-epoxy are presented in Table 3-Table 8 
for a range of significant parameters. From all the numerical 
results, it may be concluded that the differences between 
either the real or imaginary parts of the roots of the 
homogeneous equations (14), (18), and (26) are negiligibly 
small (less than 0.5 percent) for all values of n and c. 
Numerical results similarly show that simplified equations 
(27), (29), and (30) can also yield accurate solutions well 
within engineering accuracy as seen from the closeness of the 
characteristic roots of these equations to those of equations 
(14), (18), or (26). The simplified equations (28) or (31), which 
are only one term less than equations (27) or (30), are not 
always as accurate and dependable as other equations. We 
note that the accuracy of equations (31) and (28) are affected 
by the constants k and K, which is not the case for isotropic 
shells. These two equations are apparently inaccurate in the 
case w = epl3cosna when n (n = mwa/l (24)) is small, that is, 
for long shells. In the analysis of cylindrical shells under 
distributed loads Z {Z = cos m-waa/l cosnfl, m, n = 0, 1, 2, 
. . .), similar conclusion may be made that equations (31), 
(28) lead to reliable results only for short shells. Hence, 
special care is needed when these two equations are employed. 
All the preceding conclusions hold also for the cases when Ex 

and E2, vu and v2 are interchanged in the calculations and 
hence the preceding equations deduced in the paper may be 
applied to composite shells. • 

In conclusion, equations (26), (27), (29), and (30) deduced 
herein have the two essential properties of accuracy and 
simplicity that makes them of practical importance. 
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A Simple Higher-Order Theory for 
Laminated Composite Plates 
A higher-order shear deformation theory of laminated composite plates is 
developed. The theory contains the same dependent unknowns as in the first-order 
shear deformation theory of Whitney and Pagano [6], but accounts for parabolic 
distribution of the transverse shear strains through the thickness of the plate. Exact 
closed-form solutions of symmetric cross-ply laminates are obtained and the results 
are compared with three-dimensional elasticity solutions and first-order shear 
deformation theory solutions. The present theory predicts the deflections and 
stresses more accurately when compared to the first-order theory. 

1 Introduction 
The classical theory of plates, in which it is assumed that 

normals to the midplane before deformation remain straight 
and normal to the plane after deformation, underpredicts 
deflections and overpredicts natural frequencies and buckling 
loads. These results are due to the neglect of transverse shear 
strains in the classical theory. The errors in deflections, 
stresses, natural frequencies, and buckling loads are even 
higher for plates made of advanced composites like graphite-
epoxy and boron-epoxy, whose elastic modulus to shear 
modulus ratios are very large (e.g., of the order of 25 to 40, 
instead of 2.6 for typical isotropic materials). These high 
ratios render classical theories inadequate for the analysis of 
composite plates. An adequate theory must account for 
transverse shear strains. 

Many plate theories exist that account for transverse shear 
strains. Of these, the theories based on assumed displacement 
fields provide a background for the present theory [1-8]. In 
Reissner-Mindlin type-theories, the displacement field ac
counts for linear or higher-order variations of midplane 
displacements through thickness (see [1-8]). In higher-order 
theories, an additional dependent unknown is introduced into 
the theory with each additional power of the thickness 
coordinate. In addition, these shear deformation theories do 
not satisfy the conditions of zero transverse shear stresses on 
the top and bottom surfaces of the plate, and require a shear 
correction to the transverse shear stiffnesses. The three-
dimensional theories of laminates, in which each layer is 
treated as homogeneous anisotropic medium (see Green and 
Naghdi [9], Rehfield and Valisetty [10], and Pagano and Soni 
[11]), are intractable as the number of layers becomes 
moderately large. Thus, a simple two-dimensional theory of 
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plates that accurately describes the global behavior of 
laminated plates seems to be a compromise between accuracy 
and ease of analysis. The present study deals with such a 
theory. 

The present theory accounts not only for transverse shear 
strains, but also for a parabolic variation of the transverse 
shear strains through thickness, and consequently, there is no 
need to use shear correction coefficients in computing the 
shear stresses. During the course of the development of the 
present theory, it was brought to the attention of the author 
[12] that Levinson [13] and Murthy [14] presented similar 
theories for isotropic and laminated plates, respectively. The 
displacement fields used by these two researchers are different 
from each other and therefore the final equations are dif
ferent. Although the displacement fields used in the present 
theory and that of Levinson [13] are the same, the equations 
of motion differ from those of both Levinson and Murthy. 
Both Levinson and Murthy used the equilibrium equations of 
the first-order shear deformation theory (see Whitney and 
Pagano [6]). These equations are variationally inconsistent, 
for the displacement field used, with those derived from the 
principle of virtual displacements. These authors justify their 
approach merely because the variational approach is 
algebraically more complicated. Such justifications are not 
only unwarranted but they lead to technically wrong theories. 
The correct forms of differential equations and boundary 
conditions for any theory based on assumed displacement 
field are not known without using the virtual work principles. 

The present development is novel in two respects: first a 
consistent derivation of the displacement field and associated 
equilibrium equations is presented. Second, the theory is 
developed for laminated anisotropic composite plates. To 
illustrate the accuracy of the present theory, exact solutions 
are also presented for symmetrically laminated cross-ply 
rectangular plates. 

Kinematics 

The present theory uses a displacement approach, much like 
in the Reissner-Mindlin type theories. However, the 
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displacement field chosen is of a special form. The form is 
dictated by the satisfaction of the conditions that the trans
verse shear stresses vanish on the plate surfaces and be 
nonzero elsewhere. This requires the use of a displacement 
field in which the inplane displacements are expanded as cubic 
functions of the thickness coordinate and the transverse 
deflection is constant through plate thickness. Any other 
choice would either not satisfy the stress-free boundary 
conditions or lead to a theory that would involve more 
dependent unknowns than those in the first-order shear 
deformation theory. Since the transverse normal stress is of 
the order (Ji/a)2 times the inplane normal stresses, the 
assumption that w is not a function of the thickness coor
dinate is justified. 

We begin with the displacement field, 

u i (x,y,z) = u(x,y) + zix{x,y) + z2 Zx(x,y) + z3 k (x,y) 

u2(x,y,z) = v(x,y) + z^y{x,y) + z2iy(x,y)+zi^y(.x,y) 

u3(x,y) = w(x,y) (1) 

where u,v, and w denote the displacements of a point (x,y) on 
the midplane, and \px and \j/y are the rotations of normals to 
midplane about the y and x axes, respectively. The functions 
£*>£*•£>» a n c l fy w m t>e determined using the condition that 
the transverse shear stresses, axz = as and ayz = <j4 vanish on 
the plate top and bottom surfaces. 

o5(x,y,± — j = 0 , o4(x,y,± — j =0 (2) 

For orthotropic plates or plates laminated of orthotropic 
layers, these conditions are equivalent to the requirement that 
the corresponding strains be zero on these surfaces. We have 

dw 
£5 

«4 

du, du3 

dz dx 

du-> 
+ • 

du 
3 =h+2z£y + 3z2L + 

dx 

dw 
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dz dy 

Setting 65{x,y, ± h/2) and t4{x,y, ± h/2) to zero, we obtain 

£ x =0 , f , = 0 

Sx=-
4 

Jh2 (^+**)> 
4 

Jh2 (-£-•*-) (4) 

The displacement field in equation (1) becomes 
2 ' dw 

u, = u + z 

" 2 v + z\ H(I)V^)] (5) 

u, = w 
This displacement field is the same as that chosen by 

Levinson [13] (the inplane displacements were not considered 
by Levinson), but is different from that derived by Murthy 
[14]. Except for the similarity between the form of the 
displacement field in equation (5) and that of Levinson [13] 
and Murthy [14], the remaining development, especially the 
derivation of the equilibrium equations for laminated plates, 
is novel with the present study. 

The strains associated with the displacements in equation 
(l)are 
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Constitutive Equations 

For a plate of constant thickness h and composed of thin 
layers of orthotropic material, the constitutive equations can 
be derived as discussed in [6]. Under the assumption that each 
layer possesses a plane of elastic symmetry parallel to the x-y 
plane, the constitutive equations for a layer can be written as 

*1 ^ 
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(8) 

where Q,j are the plane-stress-reduced elastic constants in the 
material axes of the layer, and the bar over the quantities 
implies that the quantities are referred to the material axes of 
the layer. Upon transformation, the lamina constitutive 
equations can be expressed in terms of stresses and strains in 
the plate (laminate) coordinates as 

(9) 
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where Q,: are the transformed material constants. 

Equilibrium Equations 

Here we use the principle of virtual displacements to derive 
the equilibrium equations appropriate for the displacement 
field in equation (1) and constitutive equations in equation 
(9). The principle of virtual displacements can be stated in 
analytical form as (see Reddy [15]) 

1/1/2 <• 

I (ffiSe! + a28e2 + o68e6 + ff46e4 + o55e5)dAdz 
— ft/2. J it 
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+ \ gGw dxdy 
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+ Qx \**x + -^) +R, [- # {tyx + -^ )\^w\dxdy (10) 

where in arriving at the second step, we used the strains from 
equations (6) and (7), and the following definitions of the 
stress resultants Nh Mh Ph g, and i?,: 
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Integrating the expressions in equation (10) by parts, and 
collecting the coefficients of 8u, 8v, 8w, 8\[/x, and 5 ^ , we 
obtain the following equilibrium equations in the domain Q: 
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The boundary conditions are of the form: specify 
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Fig. 1 Geometry of a rectangular plate 
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Fig. 2 The distribution of transverse shear stresses through the 
thickness of four-layer cross-ply [0/90/90/0 deg] laminate under 
sinusoidal load (alb = 1;a//> = 10) 

where T is the boundary of the plate midplane Q, and 
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and P„ and Pm are defined by expressions analogous to N„ 
and Nns, respectively. 

It is informative to relate the resultants defined in equation 
(11) to the total strains in equation (6). From equations (6), 
(9), and (11) we obtain 
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whereby, By, etc., are the plate stiffnesses, defined by 

(.A u ,Bjj ,Djj ,Ejj ,Fjj ,Hij) 
• A / 2 

e;;/(l,z,z2,z3,z4,z6)6fe (/, j= 1,2,6) -i: 
( •A/2 

(>l ,y ,£)y . ,F i / . )= ] hn Q,y(l,z\z4)rfz (i, y = 4,5) (16) 

This completes the derivation of the governing equations. It 
should be noted that Levinson [13] and Murthy [14] did not 
account for the underlined terms in equations (12). 

Exact Solutions for Symmetric Cross-Ply Plates 

Here we consider the exact solutions of equations (12) and 
(13) for simply supported, symmetric cross-ply rectangular 
plates. The Navier approach is used (see [15]). For symmetric 
(about the midplane) cross-ply plates, the following plate 
stiffnesses are identically zero: 

Bu=Eu=0 for i, 7 = 1,2,4,5,6 

A16=A26=Dl6=D26=Fl6=F26=Hl6=H26=0 (17) 

A45=D45=F,5=0. 

Thus, the coupling between stretching and bending is zero. 
The following "simply-supported" boundary conditions are 
assumed (a and b are the plane-form dimensions of the plate; 
see Fig. 1): 

w(x,0) = w(x,b) = w(0,y) = w{a,y) = 0 

P2(x,0) = P2(x,b) = Pl(0,y) = Pda,y) = 0 

M2(x,0) = M2(x,b) = M, (OoO = M, (a,y) = 0 

ik(x,0) = tx(x,b) = tfj,(OoO = ty(.a,y) = 0 

The resultants of equation (15) can be expressed, for 
symmetric cross-ply laminates, in terms of the generalized 
displacements as 

(18) 

Mi = Au — + ^ i 2 ^ -
dx dy 

N
2 = A,2 — hy422 -T— 

dx dy 

N< 
( du dv \ 

d2W 

dy dy2 ) 

•(-£)( tyy d2W 
) dy dy2 

a - ^ ( * ' + - & ) + c » ( - ^ ) ( * * + - ^ ) 

Pl-Fll — +Hn{-W){—+-Ej-) 

*-'»£""(-s0(£-£) 

dy 

d2w\ 

dx ' ~ dxdy ) 
^ + 2 

R2=D«{^+*)+F«(-^ + ̂ P) 
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Following the Navier solution procedure, we assume the 
following solution form for (w ,^ x , ^ ) that satisfies the 
boundary conditions, 

"M" W)\dxTy + ted?) +F66\tedj> + 1?) - dxdy dxdy 

w = 2^ Wmn sinctv sin/3y 
/«,« = 1 

00 

$x = X) A ^ c o s a x sinfly (20) 
m,« = 1 

00 

4>y = L, ym„sinouf cosjSy 

where a = m-w/a and j3 = nir/b. The last three equations in 
equation (12) can be expressed in terms of the displacements 
as 

by2 dxdy dxdy2 

(d*+x d*+y\ / 4 \(dHx 

^dxdy 

dx2 + 2-
d3w 

' dx2dy ) 

+ Dl2dx¥y+D22 W n \ W2)\dxdy + dx2by) 

\F a ^ * + w ( 4 V ^ + ^ U F 
[Fnlx^+Hll\-W2)\^+W)+Fl2 

lh2 lFu dx3 
dHy 

dx2dy 

( 4 \ / a 3 ^ a4w \ 
+ Hi2\~ W2 )\~dxWy + toW/ +F 

V+x 
' 2 ^ 2 

+ 2 M a ^ ; + a^/ 

dy2dx 

Fl2 dy3 
d3w \ / 4 \ 

4 

Jh2 

+F, 

dx2 

d2tx 

dxdy 

• / 4 \ / \j/x d3w \ 

+ 2H, 

~dx2dy by2dx^ 

a 3 ^ , a 3 ^ a4w 
a^23A: 3x2a>- 3A:2 a^2 •)] 

4 

A1 

(-s0( 

• M £ * 4 T W - P ) ( £ - S T ) 

12 dxdy ' " " \ 3/!2/vaxa^ a*2dj» 

We assume that the applied transverse load, q, can be 
expanded in the double-Fourier series as 

<?= ]C QmnSinaxsinPy (22) 

Substituting equations (19) and (21) into equation (20), 
collecting the coefficients, we obtain 

(21«) 

d2i<x 

'n~dxT 
?Hy 
dxdy 

7"(-3F)( 
•d2ix d3w 

dx2 dx3 ) 

C l l c12 c13 

C12 C22 c23 

C13 C2 3 C3 3 

-

f w -^ 
TT mn y 
•^•mn 

Y 
L -* mn J 

+ = -

\lmrx 

0 

I o J 
(23) 

' M ~ V?) Kdxdy' + dxdy2)+D66\ dy2 + dxdy) 

+ F, 
d2ix , d2+y 

+ 2 
a3w\ 

; / 

4 

3F 

• ( - * ) ( dy2 ' dxdy dxdy^ 

\P
 a 2 ^^A / ( 4 v a 2 * * + 3 3 M 

for any fixed values of m and «. The elements c,y of the 
coefficient matrix [c] are given by 

c „ = o M J 5 + /3M4 4 - ^ (a2£>55 + /32Z>44) 

+ (F) 2 ( 0 i 2 F 5 5 +^ ) +(^) 2 

[a4 / / , , + 2(//12 + 2//66)a2/?2 + /34i/22] 

8 „ / 4 \ 2 

c12=aA5S-~aD55 + ̂ J aF55 

+ F, 
92h 
dxdy 
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Table 1 Nondimensionalized" deflections and stresses in three-layer (0/90/0 deg) square laminates under sinusoidal loads 

a/h variable three-dimensional elasticity 
theory [16] 

Present First-order shear deformation theory [18] 
theory 

1.9218 
0.7345 
0.1832 

0.7125 
0.5684 
0.1033 

0.4342 
0.5390 
0.0750 

k\ = k\ = \ 

1.5681 
0.4475 
0.1227 

0.6306 
0.5172 
0.0735 

0.4333 
0.5385 
0.0586 

k] = kl = 

1.7763 
0.4369 
0.1562 

0.6693 
0.5134 
0.0915 
0.4337 
0.5384 
0.0703 

5 

6 4 
1.9122 
0.4308 
0.1793 
0.6949 
0.5109 
0.1039 

0.4340 
0.5384 
0.0782 

2 
2.5769 
0.4065 
0.3030 
0.8210 
0.4993 
0.1723 
0.4353 
0.5382 
0.0117 

10 

100 

w 
"\ 
°4 
w 
"1 
"4 

W 

"\ 
°4 

0.755 
0.217 

0.590 
0.123 

0.552 
0.0938 

<70« 

(whiE1\ a b\ 
"H>=( j - )l0, w = w[ — , — ) 

\ <7o« ' \ 2 2 / 

(— A. h \ hl _ (f_ A h \ h 

" ' " " u ' 2 ' 2 / q0a
2' a2 = "2\T'Y'T/ ~g^ 

a4 = aJ ^-,0,0) , as = a5(o, — ,o) 
N 2 / q0a V 2 / 

( h \ h2 

\ 2 / gna2 

h 

Table 2 Nondimensionalized" deflections and stresses in a rectangular, cross-ply 
sinusoidal load (/), =/)/3) 

laminate under 

a/h 

4 

10 

20 

100 

Source 

Pagano [16] 
Present 
FSDT [18]* 
Pagano 
Present 
FSDT 

Pagano 
Present 
FSDT 

Pagano 
Present 
FSDT 
CPT 

w 

2.82 
2.6411 
2.3626 
0.919 
0.8622 
0.803 
0.610 
0.5937 
0.5784 
0.508 
0.507 
0.5064 
0.503 

°\ 
1.10 
1.0356 
0.6130 
0.725 
0.6924 
0.6214 
0.650 
0.6407 
0.6228 
0.624 
0.624 
0.6233 
0.623 

S"2 

0.119 
0.1028 
0.0934 
0.0435 
0.0398 
0.0375 

0.0299 
0.0289 
0.0283 
0.0253 
0.0253 
0.0253 
0.0252 

&4 

0.0334 
0.0348 
0.0308 
0.0152 
0.0170 
0.0159 
0.0119 
0.0139 
0.0135 
0.0108 
0.0129 
0.0127 

-

*5 

0.387 
0.2724 
0.1879 
0.420 
0.2859 
0.1894 
0.434 
0.2880 
0.1896 
0.439 
0.2886 
0.1897 

-

&6 

0.0281 
0.0263 
0.0205 
0.0123 
0.0115 
0.0105 

0.0093 
0.0091 
0.0088 
0.0083 
0.0083 
0.0083 
0.0083 

"See Table 1 for the nondimensionalized quantities 
The values were obtained using shear correction factors k 2 = k\- 5/6 

Table 3 Nondimensionalized" deflections and stresses in four-layer cross-ply (0/90/90/0 deg) square 
laminates under sinusoidal transverse loads 

a/h 

4 

10 

20 

100 

Source 

Elasticity [17] 
Present theory 
FSDT [18]* 

Three-dimensional elasticity 
Present theory 
FSDT 

Three-dimensional elasticity 
Present theory 
FSDT 

Three-dimensional elasticity 
Present theory 
FSDT 

w 

1.954 
1.8937 
1.7100 
0.743 
0.7147 
0.6628 
0.517 
0.5060 
0.4912 
0.4385 
0.4343 
0.4337 

Ol 

0.720 
0.6651 
0.4059 
0.559 
0.5456 
0.4989 
0.543 
0.5393 
0.5273 
0.539 
0.5387 
0.5382 

a2 

0.663 
0.6322 
0.5765 
0.401 
0.3888 
0.3615 
0.308 
0.3043 
0.2957 
0.276 
0.2708 
0.2705 

04 

0.292 
0.2389 
0.1963 
0.196 
0.1531 
0.1292 
0.156 
0.1234 
0.1087 
0.141 
0.1117 
0.1009 

°5 
0.291 
0.2064 
0.1398 

0.301 
0.2640 
0.1667 
0.328 
0.2825 
0.1749 
0.337 
0.2897 
0.1780 

°6 
0.0467 
0.0440 
0.0308 

0.0275 
0.0268 
0.0241 
0.0230 
0.0228 
0.0221 
0.0216 
0.0213 
0.0213 

" Same nondimensionalization as used in Table 1, except &2 is evaluated at (x,y,z) 
b Shear correction factors, k\ = k\ = 5/6. 

(a/2, a/2, h/4). 
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Table 4 Nondimensionalized deflections in three-layer cross-ply (0/90/0 deg) square laminates under 
uniform loading 

a/h 
2 
4 

10 
20 
50 

100 

' N=9° 
7.7681 
2.9103 
1.0903 
0.7761 
0.6839 
0.6705 

Present theory 
N=29 
7.7661 
2.9091 
1.0900 
0.7760 
0.6838 
0.6705 

N=29 
7.7661 
2.9091 
1.0900 
0.7760 
0.6838 
0.6705 

First-order shear deformation theory 
N=9 

7.7170 
2.6623 
1.0224 
0.7574 
0.6808 
0.6697 

N=29 

7.7066 
2.6597 
1.0220 
0.7573 
0.6807 
0.6697 

N=49 

7.7062 
2.6596 
1.0219 
0.7573 
0.6807 
0.6697 

"Number of terms in the series, w = £ m , n = l , 3 , . H a s i n a * sin/3y. . ,Nrv mn' 

— Higher-order theory 

First -order theory 

Classical plate theory 

a/b = 1, a/h = 10 

I I cr 

V E 2 

Fig. 3 The effect of material anisotropy on the nondimensionalized 
center deflection of a four-layer [0/90/90/0 deg] square plate under 
sinusoidal load 

+ ( 3 ^ ) [« 3 / /„ + a ^ ( / / , 2 +2//66)] 

8 / 4 \ 2 

j^[a2m2+2F66) + pF21] 

+ (jh2) [ci2^Hn+2H66) + pH22] 

c22 =A„+aiDll +P2D66 - ~D55 + (^Y F55 

~ 3 F ( a 2 j F " +02F^+ ( 3 ^ 2 ) 2 («2Hu+pH66) 

c23 =ap[Dl2 +D66 - ^{Fu +F66)+ ( A ) * (Hn +H66)] 

- ^ 2 («2F66 + ?F22) + ( ~ ) 2 W2H22 + a2H66) (24) 

The solution to equation (23), in conjunction with equation 
(20) gives the exact solution for any load that can be expanded 
in terms of the double-Fourier series. For example, for 
sinusoidally distributed load, 

Q(x,y)-
. KX . Try 

= 9 o s l n — s m — 
a b 

(25) 

we have m = n = \, and Qn =q0. For uniformly distributed 
load of intensity q0, the coefficients Q„,„ are given by 

16<7o 
Qn (26) 

Numerical Results 

Here we present numerical results for a couple of symmetric 
cross-ply plate problems, and discuss the improvement in the 
prediction of displacements and stresses by the present theory. 
The three-dimensional elasticity solutions of Pagano [16] and 
Pagano and Hatfield [17] for simply supported rectangular 
plates under sinusoidal loading are used to assess the im
provement. The following four laminated plate problems are 
considered: 

1. A three-ply square laminate with layers of equal 
thickness and subject to sinusoidally distributed tran
sverse load. 
2. The same lamination geometry and loading as in 
Problem 1, except the laminate is of rectangular 
geometry (b/a = 3). 
3. A four-ply square laminate with layers of equal 
thickness and subjected to sinusoidally distributed 
transverse load. 
4. The same geometry and lamination scheme as in 
Problem 1 except the load is uniformly distributed. 

In all problems, the lamina properties are assumed to be 

Ex = 25 X 106 psi (174.6 GPa), E2 = 106 psi (7 GPa) 

Gn = G13 =0.5 x 106 psi (3.5 GPa) (27) 

G23 = 0.2 x 106 psi (1.4 GPa), c12 = pl3 = 0.25 

Tables 1-4 contain nondimensionalized deflections and 
stresses for the four problems. For Problems 1, and 2, the 
results obtained using the present theory are compared with 
those obtained by the three-dimensional elasticity theory (see 
[16, 17]) and the first-order shear deformation theory (FSDT) 
(see Reddy and Chao [18]). In Table 1 the results obtained 
using various shear correction coefficients in the first-order 
shear deformation theory are also included. Note that the 
shear correction factor of 5/6 can also be arrived from the 
present theory. For example, the average shear force per unit 
length of an edge prependicular to the x-axis is given by 

(e5)a 
; 2 J -w \ °sdz 

r„o-S)*M-s-*') 
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•°»(-s-*->] 

/ dw \ / dw \ 

=^«(ir+*')+i4»(-to-+*')" (28) 

from which it follows that the shear correction factors are 
given by 

*i*2=4« *2=4- (29) 

For Problem 3, the exact stresses au a2, and a6 computed 
using the constitutive equations of the higher-order theory, 
are greatly improved over the results obtained using the first-
order and classical plate theories (see Fig. 2a). The shear 
stresses obtained using constitutive equations are on the low 
side of the three-dimensional elasticity solutions. This error 
might be due to the fact that the stress continuity across each 
layer interface is not imposed in the present theory. As in the 
case of the Classical Plate Theory (CPT), the transverse shear 
stresses can also be determined by integrating equilibrium 
equations (of three-dimensional elasticity in the absence of 
body forces) with respect to the thickness coordinate: 

OS = ~ J (ax,x + °xy,y)dZ 

(30) 

<j4 = - J _ ^ (aXyiX + ayy)dz 

The foregoing approach not only gives single-valued shear 
stresses at the interfaces but yields excellent results for all 
theories in comparison with the three-dimensional solutions. 
Despite its apparent advantage, the use of stress equilibrium 
conditions in the analysis of laminated plates is quite cum
bersome. Typical stress distributions of a5 = axz and CT4 = ayz 
through the thickness {a/h = 10) are shown in Fig. 2(b). 

According to Whitney and Pagano [6], the severity of shear 
deformation effects also depends on the material anisotropy 
of the layers. The exact maximum deflections of simply 
supported four-layer [0/90/90/0] cross-ply laminates are 
compared in Fig. 3 for various ratios of moduli, Ex/E2 (for a 
given thickness, a/h = 10). The CPT underpredicts the 
deflections even at lower ratios of moduli. The disagreement 
between the higher-order and first-order theory is, in parts, 
owing to the higher-order contributions of the present theory 
and the fact that the shear correction factors depend on the 
lamina properties and the lamination scheme. 

Summary and Conclusions 

An improved shear deformation theory that gives parabolic 
distribution of the transverse shear strains is developed. The 
theory contains the same number of dependent variables as in 
the first-order shear deformation theory, but results in more 
accurate prediction of deflections and stresses, and satisfies 
the zero tangential traction boundary conditions on the 
surfaces of the plate. Exact closed-form solutions of the 
equations presented herein can also be derived for an
tisymmetric cross-ply and angle-ply laminates (see [19]). 

From the results in Tables 1-4, one can conclude that the 
present theory, in general, gives more accurate results than the 
first-order shear deformation theory when compared to the 
three-dimensional elasticity solution. Although an adjustment 
of the shear correction factors seem to improve the results 
obtained by FSDT (see Table 1), too low a value of kx and k2 
overpredicts the solution. In Problems 2-4, a value of 5/6 is 
used in obtaining the FSDT results. The present theory also 
gives, relatively speaking, faster convergent solution when 
compared to the FSDT theory, as can be seen from Table 4. 
The results for uniform loading should serve as reference for 
finite-element analyses. 
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On the Effect of Dislocation Loop 
Curvature on Elastic Precursor 
Decay 
The exact solution for the fields radiated from a circular dislocation loop expanding 
in its own plane with constant velocity is obtained in terms of elliptic functions of 
different kinds. The solution is used to obtain the contribution of small disloction 
loops to the decay of the leading wave front of a wave propagating in an elastic solid 
containing dislocations. It is found that the loop curvature can contribute to the 
decay in the leading term. 

Introduction 

In two recent publications Clifton and Markenscoff [1] and 
Markenscoff and Clifton [2] studied the effect of radiation 
from moving dislocations to the elastic precursor decay, i.e., 
the decay of the leading elastic wave front of a pulse 
propagating in an elastoplastic material. These analyses lead 
to the same result: that the precursor decay per unit distance 
of propagation is proportional to the product of the average 
mobile dislocation density and dislocation velocity at the wave 
front. The difficulty, however, with this phenomenon is that 
comparison of measured and predicted precursor amplitudes 
indicates that the measured amplitudes are much less than 
those predicted using the initial dislocation density and 
reasonable estimates of dislocation velocity. For a discussion 
of the explanation proposed to reconcile this discrepancy the 
reader is referred to [1] and the references cited there. The 
fundamental difficulty is that the dislocation density must be 
increased by two to three orders of magnitude to account for 
the order of the measured decay, and this is considered 
unlikely. One possibility, however, can be that dislocation 
loops are expanding from a sufficiently small initial radius. In 
the analysis in [2] Markenscoff and Clifton assumed large 
initial dislocation loop radii, so the analysis did not show any 
loop curvature (radius) effect on the wave front itself. 
However the finite response time At (of the order of a few 
nanoseconds) of the detectors can be a critical factor. In this 
analysis we assume that the loop radii are of the order of c2At 
(where c2 is the shear-wave speed), which is plausible, and 
obtain an effect of loop curvature on the precursor decay 
which is of the same order as the leading term previously 
obtained in [1 and 2], 
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Radiation From an Expanding Dislocation Loop 

Here we consider a circular dislocation loop in an isotropic 
solid with Burgers vector bx in the plane of the loop and 
without loss of generality taken along the x1 -direction. The 
loop is at rest until time t' = 0 when it starts expanding with a 
constant radial velocity V. In the sequel the exact solution for 
the velocity field of this problem is obtained. In [2] only the 
wave-front asymptotic behavior was obtained. 

The velocity field of a dislocation loop £ (0 moving with a 
velocity V(x', t') where x' denotes a point on the loop is given 
by [3] 

^,„(x, 0 = —\ dt'\ CuklGkm(x-x', t-t') 

Vr(x',t')b,ejrsdl/(t') (1) 
where CiJkl denote the elastic coefficients, Gkm is the Green's 
function for a unit impulse in a full space [4], Vr is the 
velocity vector at any point on the loop, b, is the Burgers 
vector, dls' is a line element a long the loop, and eJrs is the 
permutation symbol. The expression (1) differs from the one 
given by Mura [5] in that the differentiation is outside the 
integral. For a discussion of this issue we refer to [3]. 

For isotropic materials, the Green's function is given by 
Love [4] 

°«-*-- ''>-is(?(^-*M'-~)<-0 

where p is the density, i = t — t', ft = x,. - *,•', r2 = x\ + x\ 
+ x\,r2 = (xx - x[)2+ (x2-*D2 + (*3 - x,)2; ct and c2 
are the longitudinal and shear wave speeds, H ( ) denotes the 
Heaviside step function, <5 ( ) denotes the delta function, and 
<5y is the Kronecker delta. For the loop geometry in con
sideration and for isotropic materials, the only nonzero terms 
in (1) are obtained from the terms containing 

Cm3Gu and CimG3l (3) 
The coordinates of a point on a circular loop with initial 

Journal of Applied Mechanics DECEMBER 1984, Vol. 51 / 753 

Copyright © 1984 by ASME
Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



radius a0 that begins to expand on its own plane with constant 
radial velocity Fat time t' = 0 are 

x[ = xs + a(?')cos0 

x2 = x2 + a (Ds in0 

x3' = 0, (4) 

where x,- are the coordinates of the center of the loop and . 

a(t') = a0 + Vt'H(t'). 

From (l)-(4) the velocity component U\ can be written as 

q \ Co / c2, 

de 

d* , J-<» Jo 47rp L c 2 r ^ c 2 / 

(5) 

First we consider the integral 

j _ r . .r2": c„„ I l 
5x3 J -oo J 0 4irp f c\ 

b(t-—\va(t')dd (6) 

and carry out the integration with respect to 0: 

where 

f=/{Oit')*t- — 
c2 

(7) 

(8) 

tersection of the sphere with center (x,, x2, x3) and radius c2t 
with the loop at time t. 

From (4) and (8) we obtain 

df/dB 
-a(t') 

(x, - Xi )sin0o - (x2 - x2)cos0o) 
«o c2r 

which, by means of (10a) and (106), can be rewritten as 

df/dd —T=- sin(0o - <t>). 
cit 

Finally, using (11) we obtain 

a{t')a 
df/d6 = - V - VT^C2 (12) 

For the angles 0O in (11) to be real, the values of C in (106) 
must satisfy 

- 1 < C < 1 (13) 

The limits of integration in f' are defined by the inequalities 
(13). The motion of the loop from this point on is assumed 
subsonic,i.e., V< c2 < cx. 

From 1 - C > 0, or equivalently: 

-c2
2(t-t') + {a0+Vt')2 +a2 +xl-2(a0+Vt')a<Q, 

it follows tha t / ' < ? , , / ' s t2 

where 

U = ~{c2
2t+V(.a0-a)'M 

h = - ^ - ( c 2
2 / + K ( a 0 - a ) + /31), 

with 

Pi = c2^j(a -a0- Vtf +(l-—}4 

and 

(14.) 

(142) 

(143) 

Moreover, it may be also seen that tx < t < t2. 
From 1 + C > 0, or equivalently: 

-4(t-t')2 +(<x0+Vt')2 +a2 +xl+2(a0+Vt')>0, 

and 0O are the zeros of f(6;t'). These zeros correspond to the 
points where the domain of dependence of the solution at (x, 
t) intersects the loop at time t'. From (4) and (8) the values 0O 

satisfy 

cos<t> cos0o + sin</> sin0o = C 

in which 

h * t' < U, 

<t> = t a n " l
/xizx2_\ 
\ X, -X, / 

(9) 

(10a) 

it follows that 

where 

h = ~{c2
2t+V(a0+a)-p2} 

t* = -^-{4t+V(a0+a) + M, 

and 

C = [a{t')2+a2 + x\ -cli2]/2a(t')a, 

where 

« = [ ( * , - * , ) 2 + ( x 2 - x 2 ) 2 ] ' / 2 . 

The two values of 0O that satisfy (9) are 

0o,O2 = 0±cos~ l C 

(106) 

(10c) 

(11) 

with 

ft. = c2 J(« + a0 - Vt)2 + (l - -j ) xi. 

(15,) 

(152) 

(15j) 

The angle 4> corresponds to the angle that the plane normal 
to x3 = 0 and containing (x,, x2, x3) and the center of the 
loop makes with the x, axis. The angles 0O1|O2 locate the in-

We can also easily prove the following ordering of the roots 

f3 < r, < t < t2 < t4 

and obtain the following signs for t{ and t3 according to the 

cases: 
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i h—*^—a(*3' 

Fig. 1(a) Upper and lower limits t j and t3 for contribution to the 
solution at P (for the case: c§t2 > x§ + (a + a0)2) 

P(0,0 ,x 3 ) 

Fig. 1(b) Upper and lower limits f-| and 0 for contribution to the 
solution at P{tor the case: x§ + (a-a0)

2 < c 2 r 2 s x 2 + (a + a0)
2) 

Fig. 1 

(a) If c2
2t

2>x2.+(.a + a0)
2 

(b) If c2
2t

2<x2
3+(a-a0)

2 

then 

then 

h>0 

t{<0 

(16,) 

(162) 

(c) If x\+(a-a0)
2<clt2<x]+{a+a0)

2 

then A > 0 and t, < 0 

Therefore the limits of integration in case (a) are: /3 < ?' < 
(l, and in case (c): 0 s f' < ?,. These limits are illustrated in 
Figs. 1(a), (b), respectively. Case (b) obviously indicates that 
the field point lies outside the wave front. 

The main contribution to Ul is due to the term 

ox3 Jo Jo - ^ T K K ) 1 * * ' * * c\ Airp 

'—1313 

2irp a c2 

bx V d C< 

a c2 dx? J m 

dt' 

3 Jmax(/3,0) ( 1 - C 2 ) 1 (17) 

and we proceed to evaluate the integral for the two cases t3 > 
Oand?3 s 0in(17). 

F o r ^ > 0 : 
dt' 

M 

la 

M r ' i 
= ~~a~ )t3 (1 -C 2 ) 1 7 2 

where 

M= 
ib<V 

2irpc2 

where 

X(t') = 2aa(t')(l-C)^D(tl-t')(t2-t') 

Y{t') = 2aa{t')(\+C)^D(t'-t3){t,-t') 
so that 

/ i = 
M 

2a. 
ft' - ^ 3 ) ^ 4 - ^ ) * ' 

The preceding integral can be found in the Handbook of 
Elliptic Integrals [6, p. 109] and is equal to: 

dn2u du 

+ ( '4-f i)( ' i 

where 

M r s. , f«i efo 

s L ( / a - ' l ) V * l o (T^2
OT

2
M)

2 

"i cn2« a>!2y du' f"i cn^u dtf'u dul 
3 ) 8 Jo (\-¥sn2u)2\ 

(18) 

0 < t 2 ^ ' » - * 3 ) 2 

and s« w, en w, and efa H are the Jacobian elliptic functions [6, 
p. 18] and «, = sn{(\). 

The expression (18) can be further simplified by use of the 
Tables of Elliptic Integrals [6, pp. 218-219] to yield: 

h = ^gHh-t3)(t4-t2)K(k) + (tl -t2)~m2,k)} 

with 

* * - < *« - hX'i-ti) 

(19) 

(20) 
( / 4 - ^ l ) ( ' 2 - ' 3 ) ' 

where K(k) and II(£2, /:) are the complete elliptic integrals of 
the first and third kind, respectively [6, p. 8]. Similarly, for t} 

< 0, the integral in (17) takes the form: 

M r' i 
a Jo 

dt' M 

2il ( l_C2)i /2 = '^.Si(t2-t3)(tA-t2)F(<l>,k) 

4Va 
+ (tl-t2) — Jl(<j,,u2,k)} 

(I63) where 

0 = sin ' 1 ( ^ - ^ 3 ) 

t2Ui-t3) 

and F(0, k) and 11(0, £2, A:) are the incomplete elliptic in
tegrals of the first and third kind, respectively [6, p. 8]. 

Having obtained the expressions for the integrals / j , and I2 

we will now differentiate them with respect to x3, i.e., 
evaluate 
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M d f ' l 

a dXi J ma: 

dt' 

:«3,0) ( 1 - C 2 ) 1 

on the right-hand side of equation (17). 
We have from (19): 

AVa 

+(ti-t2) — m2,m 

in which we can substitute the derivatives: 

P(0,0,x3) 

(0 ,0 ,x 3 -z >REGION I 

- l a x2 

dx3 

•d 

dx3 

_d_ 

dx3 

d 

dx3 

_ 3 _ 

dx3 

dx3 

D dx3 

x3 

0i 

_ Xl_ 

02 

02 

g 
g *3 ( f f i + f e ) 2 

D W2 iU-tMh-ti) 

l_r± 
-U)2 LB, 

1 

dx3 

K 

(t2-h) 

jc,K f - ( / 3 , - / 3 2 ) 2 

£0 

2 Pi J 

,K C -(jB 

i & t - C i - ' -

(/Sl+02): 

) ( ^ 4 - ^ ) ( ' 2 - ^ ) ^ 4 - ^ ) M ) -

and the expressions for the derivatives of the elliptic functions 
[6, p . 282] to obtain the final result: 

/ i = 
2Mclx3g(a0 + Vt) [*(*)-

D8i82 

2Mc\g\a0 + Vt)x3 

20,02 

(AT(*)-2E(*)), 

*(*)] 

Fig. 2 Range of dislocation loops contributing to the solution at (0,0, 
*3,*3lCi + At) 

Contr ibut ion to Elastic Precursor D e c a y 

For the elastic precursor analysis we are interested, as in [2], 
in evaluating the particule velocity Ut at (0, 0, x3, x3,/c2 + 
At) due to a dislocation loop that began expanding on the 
plane x 3 = x3 at the time / = x3/c2, that is, when it was hit by 
the propagat ing pulse. The segments of the loops that con
tribute to the solution at (0, 0, x3, x3/c2 + At) must lie inside 
a paraboloid of revolution about the x} axis, shown in Fig. 2, 
which satifies the equation (see [2]): 

2{x3-x3)c2At = (x\+x2
2)-c

2
2{At)2. (23) 

For the end result we need to superpose the effects on point P 
due to all the dislocation loops or segments of loops that lie 
inside the paraboloid. Analogously as in [1 ,2 ] , we may divide 
the paraboloid into two regions, defined as follows: 

D\\-k2) 

where E(k) is the complete elliptic function of the second kind 
[6 ,p . 8] . 

Similarly for t} < 0 have 

(21) Reg ion / : x3 -z<x3 <x3 + 
c?M 

Region II: 0 <x3 < i 3 - z 

(24) 

(25) 

• ^ 2 - T - / 2 = 
dx} 

2Mc2
2x3gHa0 + Vt) 

D\\-k2) 
[F{<j>,k)-2E(<j>,k)) 

2Ma0X3 fao*3 / ht2 1 f 1 / h 

( ' 2 - ^ l ) 

~h) 

1 d f 2 ( ' 2 - ' 3 ) 02 fa-hXtt-tj) 

Mx3 lti(-t3) (U-h) U aD^ t2t4 (h-t^U-h) 

i-h) ] 2MV 

- ( 0 , - 0 2 ) 2 ( / 4 - ? i ) 

BiB2(t4-t3) 

( 0 ! + 0 2 ) 2 (U-t2) •) , 2MVx3 1 

(ti-h) 

where z is 0((c2At)n/" + [) with n > 3 /2 and is measured from 
the point P(0,0,x3). We will treat Region 77 first since it is the 
one that gives the main contribution and leave Region I for 
the end. 

In Region 77 we can approximate the expressions / , and J2 

(given by (21) and (22), respectively) asymptotically by 
considering (25) and making the assumption that 

a 0 ~ 0 ( c 2 A 0 , (26) 

which implies that we neglect loops smaller than 0(c2A/) as 
physically too small, given the magnitude of At to be of the 
order of 1 0 " 9 sec. 

Under (25) and (26) the limits of integration t[tt2,t3, and t4 

have the aproximations 

tut3=At + h.o.t. 

2c2(x3 -xi) 
h.U 

Bit (t2-tx){t2-t3)(tx-h) 

tit,(-h) (t2-t{ t2+ti-2t3\ 

D 
+ h.o.t. 

(27,) 

(272) 

i(-h) (> 
(22) 

so that k2, given by (20), is at most 0(.(At)Un + l) and K(k) ~ 
i r /2 , E(k) ~ TT/2. For these values of K(k), E(k), and tut2,t3, 
tA, the expression / , of equation (21) assumes the following 
expansion 

where E(<j>,k) is the incomplete elliptic function of the second 
kind [6, p . 8]. 

2Mc\(a0+Vt){x3-xi) ( 

(c2(x3 -x3))
3 (-!).*.„., 
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•irVM 
+ h.o.t. (28) 

c2{x3 -x3) 

Also under the restrictions (25) and (26), J2, given by equation 
(22), assumes the expansion 

-2a0M _ _ _ 
2 c2slc2

2t
2 -(x3 -xtf - ( a - a 0 ) 2 V ( a + a 0 ) 2 -c2

2t
2 -(x3 -xi)2 

+ h.o.t. (29) 

The dislocation loops that lie initially entirely inside the 
paraboloid (Fig. 2) have centers located at a distance a: 0 < a 
< r , = s(xi) - a 0 , i.e., they lie inside a circle of radius s -
a 0 , while the dislocation loops that initially intersect 
the paraboloid have centers located in an annulus r, = s(x3) 
- a0 < a •< r2 = s(x3) + a0 (Fig. 2) where s(xi) = 

V c | / 2 - ( i 3 - X j ) 2 . 

For the superposition of the effect of all dislocation loops 
in Region 7/ to the point P, we integrate over the range of the 
location of the centers described in the foregoing. Thus from 
loops lying either totally inside the paraboloid (initially) or 
intersecting the paraboloid, the contribution at P from 
Region II is: 

i
x 3 -z p s(> 

0 * 3 ' J 0 

' * 3 - z rs(x3)-a0 

dx3\ Jyl-KNL ada 

p i 3 - j f s(*3) + <*o 
+ dx3 J22irNL ada (30) 

J 0 J s(x3) - a 0 

where NL denotes the number of dislocation loops per unit 
volume. Substituting (28) for J\ into the first term of (30) we 
have 

PX3-Z ( • * 

JO * ' ! 
rW)-«o ClmbiV Kir 

2irp c2 c\(x3 -x3)
 L 

•*3-« -TTNL Clmb{ V2 

lo . 2pc\(x3-xi) 
(s(xi)-a0)

2dxi+h.o.t (31) 

If we substitute (29) for J2 into the second term of (30) we 
obtain 

S
x3 -z (• s(x3) + < 

dxi\ 
0 J s(x3 ) - a. 

s(x3) + a0 

ix3)-"0 

2NLCm3b 1 V a0ada 

pcys(x3)
2-(a-a0)

2 J(a + a0)
l-s(xi)2 + h.o.t. 

- I 
x3- C13,3 b, VNLira0 

pc\ 
dxi+h.o.t. (32) 

In Region I those loops, which after t ime At are near the 
point P, can create singular fields. The centers Q of these 
loops are initially located at x3 - x3 and a = a0 = a 0 + V 
At. For these loops the contribution at P is singular since t2 -
tx = 0 in expressions (21) and (22). From (22) it follows that 
for ti = 0 or t3 = 0, or t\ = t3, J2 is singular, but it can be 
easily seen that these singularities are integrable and give 
negligible contr ibution in superposition. 

We will prove that when superposing over all the loops in 
the neighborhood of Q the singularity is integrable and in fact 
there is no contr ibution to the present decay from these 
points . Consider a loop centered at (a, xi) such that 

a 0 - e < « < « o + e. X3~e<xi<X3 + e 

where e ~ 0(c2A0- The contribution of this loop can be either 
of the / ) or J2 type according to the magnitude of a 0 (here we 
suppose s(x3) > a0; the s(x3) < a0 case can be treated 
similarly). 

By superposing the loops centered in the neighborhood of Q 
we have 

or 

i 3 + e max(«0 + e,s(xi) - «o) 

1 J{ 2w a dadxi 

x3 - e min(tf0 - e,s(xi) - a0) 

x3+e min(a0 + e,s(xi) - a0) 

\ J2 2ir a dadx3 

x3-e max(a 0 - e,s(xi) ~ «o) 

(33,) 

(332) 

In this region of integration it may be seen from (20) that k 
- 1, so that K(k) ~ ln(\ -k2) [6, p . 299] and the integrals 
(33!) and (332) may be seen to be at most of 0 ( a 0 (A0 r ) (with r 
> 0 ) . 

For the contr ibution coming from the rest of Region I the 
corresponding integrals may be also shown to give con
tributions at most of order 0(a0(Ar) r) (/• > 0), since K(k) is at 
most ln(At) and 1/1 - k2 is at most \/At. 

Thus dislocation segments or loops lying inside Region I 
give negligible contributions as At — 0. 

To obtain the precursor decay relationship we need to 
differentiate (31) and (32) with respect to x3: 

d r * 3 - * - x A k t * 3 ' ) C 1 3 1 3 & , V2 d Cx 

dx3 Jo 2p c\(x3 -xi) 
(s(xi)-a0)

2dxi 

-*N, !£u r(X3-Z)Ci313bi V2 

2pc\z 

{^2c2zAt + c\At2-al) 

+)o "^wA-j^r\dxi (34) 
•Cr (x 3 ' ) - a 0 ) 2 

v3 L x3 —xi 

The main contr ibution of (34) comes from the first term while 
the integral may be seen to be bounded by a term of smaller 
order in At. Thus the leading term in (34) is 

- T r C . j u f t , V2 

pej 
AtN, 

-NbiV2 / At 
•x3 =x3 -z ( ^ ) , ( 3 5 ) 

V an / 

where C1313 = p c\ and N denote the dislocation line length 
per unit volume and is equal to 2ir a0 NL. 

Proceeding with differentiation of (32) we obtain 

d 

dx3 r Cm3bVNL 7 r a 0 , , bxVN 
—dxi = — 

pc2
2 x3 =x3 -

(36) 

We have therefore obtained the leading term in the 
precursor decay, which by adding (35) and (36) is 

DU, by VN 
( l + ^ 
\ an 

(37) 
Dx3 2 \ a 0 

where A^ and V are evaluated immediately behind the wave 
front since z — 0 as Af — 0. For loops of radius a 0 — 0(c2A0 
we can have addit ional contributions to the precursor decay 
and this may explain - partly at least - the increased value of 
the decay. Any other terms in (c2A?) will give contributions of 
smaller order, and this analysis has only been carried to the 
leading order. 
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Neck Propagation in Tensile Tests:
A Study Using Rate-I ndependent, Strain
Hardening Plasticity
A J2 yield criterion and time and temperature-independent flow theory ofplasticity
have been applied to study characteristic phenomena observed in tensile tests of
some ductile polymers: namely a load drop immediately after yield and stable
propagation of a neck along the entire length of the specimen. A trilinear stress
strain curve is used to quantifY the effect of material model data on these physical
observations.

Fig. 1 Typlcalload·dlsplacement behavior observed In polycarbonate
tensile tests

hardening modulus at large strain exceeds the true stress at
that strain. This necking process is, of course, actually three-.
dimensional in nature. Regarding the decrease in load after
yield, Brown and Ward [5] argue that the reduction observed
in polymers cannot be explained purely on the basis of the
mechanics of necking. They emphasize that during tensile
tests of polyethylene terephthalate, a decrease in true stress
was observed after yield. Other investigators have sub
sequently reported similar decreases in true stress in
polycarbonate [6, 7] and polyvinyl chloride [7]. More
recently, Hutchinson and Neale [8] have significantly ex
panded the mechanics of neck propagation with a three
dimensional analysis of the necking phenomenon in an
axisymmetric tensile specimen. Using both nonlinear elastic
and inelastic flow theory (both rate-independent and rate
dependent), Hutchinson and Neale reinforce Vincent's
suggestion that an upturn in the true stress-strain curve leads
to a termination of the localization and forces the neck to

Introduction

Although many polymers exhibit ductile behavior in tensile
tests, the characteristics of that behavior may often be quite
different than those observed for metals. During a tensile test
on polycarbonate, for example, yield and neck initiation
occur simultaneously a't a strain of about 6.0 percent.
Although Vincent [1] notes that in some polymers the crOSS
sectional area in such a neck may steadily decrease until
failure (as is often observed in metals), in many polymers like
polycarbonate the cross-sectional area actually reaches a finite
minimum. After reaching this minimum, the shoulders of the
neck propagate along the length of the specimen, as shown by
the sequence of photos in Fig. I, until they are finally
inhibited from additional movement by the enlarged cross
section near the specimen grips. The mechanics of this
phenomenon, known as "cold-drawing," will be the general
subject of the discussion that follows.

Robertsen [2] suggests that the cold-drawing of plastics is
often characterized by two features: the shape of the load
extension curve in tension and the shape of the drawn test
specimen. Both of these characteristics are exhibited for
polycarbonate in Fig. 1. Most of the investigations directed at
cold-drawing in polymers, references [2-4] for example, have
dealt primarily with the thermodynamic and molecular
mechanisms that may initiate the yield process at point A in
Fig. 1, rather than the mechanics of a stable, propagating
neck. Vincent [1] appears to have been the first to discuss the
mechanical aspects of propagating necks in polymers. He
argues that the drop in load after yield at point A in Fig. 1 is
related to the mechanical process of necking. Furthermore, he
uses a one-dimensional construction originally applied by
Considere to argue that a neck of finite cross-sectional area
will propagate along the length of a specimen only if the local
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spread along the length of the specimen. Bagepalli [9] has also 
analyzed the mechanics of neck propagation in axisymmetric 
tensile tests of polymers and suggests a new material model 
which also incorporates an upturn in the true stress-strain 
relationship to model this behavior. 

The present investigation addresses issues of mechanics 
with respect to two specific characteristics of cold-drawing as 
observed in polymers. First, immediate post-yield defor
mation behavior and, specifically, the drop in load which is 
often observed simultaneously with yield initiation in tensile 
tests of polymers is discussed. The relative effects of 
geometric (necking) instability and material (true stress versus 
natural strain) instability are examined. Second, rate-
independent constitutive parameters governing the ap
pearance of either an unstable, local neck or a stable, 
propagating neck are investigated. In addressing these issues, 
the finite element method including both finite deformation 
and plastic material behavior is applied to analyze an 
axisymmetric tensile specimen. With the exception of 
Hutchinson and Neale [8] and Bagepalli [9] previous 
numerical investigations [10-12] directed at the necking 
process have applied post-yield, hardening relationships with 
monotonically decreasing tangent moduli. In contrast, the 
current investigation provides for the appearance of an in
creasing tangent modulus to quantify its effect on the ap
pearance of a propagating neck. 

Constitutive Models 

Although strain rate effects are certainly important for 
many polymers, this investigation is limited to time and 
temperature-independent constitutive relations under the 
assumption that a clear understanding of this more simplified 
behavior is a logical point of depature for subsequent studies 
that would include these effects. The material behavior 
considered here is modeled as elastoplastic in nature with the 
yield criterion defined by a standard J2 (von Mises) yield 
surface. Flow theory of plasticity is applied in the post-yield 
region of material behavior in conjunction with isotropic 
strain hardening and elastic unloading. Two simple models 
shown in Fig. 2 are applied to describe the relationship be
tween effective stress and equivalent plastic strain. For the 
initial, post-yield stability investigation, the effective stress is 
related to the equivalent plastic strain through a constant 
hardening modulus E2 which would be defined from uniaxial, 
true stress versus natural (logarithmic) strain measurements. 
A range of hardening moduli, E2, varying from -2oy to 
+ 2oy is studied. In contrast, a trilinear relation between the 
true stress and true strain, also shown in Fig. 2, is applied to 
study the stable necking process observed in the tensile tests of 
many polymers. In this model, the material is linear elastic 
until yield. For simplicity, perfectly plastic behavior, defined 
by 

£ 2 = 0 (1) 

is assumed immediately after yield. After incurring a natural 
plastic strain of ed, the hardening modulus is then assumed to 
increase to E3. The behavior of this model over a range of 
values for both ed and E} is investigated. 

Continuum Formulation 

There are various possible continuum mechanics for
mulations for general, elastoplastic analyses including both 
large displacement and large strain effects. One such for
mulation, which is implemented in the finite element code 
ADINA and applied in this investigation, is an updated 
Lagrangian description. A thorough discussion of this 
development as it relates to the ADINA code is given in 
references [13, 14]. For the purpose of describing the 
governing equations pertinent to the problem considered here, 

12.7 cm 
(5.0 in) 

JU-

10.2 cm 
(4.0 in) 

1.27cm 
(0.5in) 

E = 2.1 GPa 
(3.0 x 105 ksi) 

o, = 68.9 MPa 
(10.0 ksi) 

r 
2.5 cm 
(1.0 in) 

J . 

RE. 

"//////'////// NATURAL (LOGARITHMIC) STRAIN 

Fig. 2 Finite element model and true-stress versus natural strain 
relationship 

a more general outline is presented. The governing virtual 
work principle in the updated Lagrangian formulation is 

[ C,+A'SiJ)8C'eij)dv = '^'R 
J ty 

(2) 

where 'K i s the volume of the body at time t, i+A'S,y is the 
second Piola-Kirchoff stress tensor at time t + At referred to 
the configuration at time /, 5(!+A'e,y) is the variation of the 
Green-Lagrange strain tensor at time t + At referred to the 
configuration at time t, and l+A'R is the external virtual work 
at time t+At. The strain at time t + At with reference to the 
configuration at time t including large displacements can be 
expressed as 

> + A>C..= - ( 1, iJ + t"j,i)+~ ( / " * , / ) ( r " * , y ) (3) 

where «,- are the incremental displacement components and 
the commas in the subscripts represent differentiation. 

The elastoplastic constitutive behavior is described using 
the incremental flow theory of plasticity. If, for the moment, 
infinitesimal strains and displacements are considered, it is 
assumed that the total strain increment de,j can be decom
posed into an elastic component defj and a plastic component 
defj 

den = de§ + deP 

The elastic stress-strain law is then 

daiJ = Cfjrs(ders-dep
s) 

where Cfjrs represents the elastic constitutive constants, 
the present problem, the von Mises yield function 'F ( ' a y , 
is applied with isotropic hardening where 

1 'a Cep) 

(4) 

(5) 
For 
<ep) 

(6a) 

Here, s^ are the deviatoric stress components, 'ay is the 
current yield stress at time t and 'ep is the accumulated ef
fective plastic strain at time / 

•-i: dep 

For elastic behavior 

and 

'F('aiJ,'e
p)<0 

(6b) 

(7) 
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defj^O (8) 
During plastic flow, the stress state must stay on the yield 
surface and 

d'F „ d'F B 

— ^ + ^ ^ - 0 (9) 

The associated flow rule is then 
d'F 

def} = 'd\—- (10) 
any

where 'd\ is an infinitesimal scalar factor. Using equations 
(4), (5), and (9) an expression can be derived for 'd\. 
Equations (5) and (10) can then be used to write an in
cremental constitutive relationship which can be expressed 
symbolically as 

doy = 'Cf/sders (11) 
Differentiation between plastic loading and elastic unloading 
is made during each incremental solution by calculating a set 
of incremental stresses, do' y, using the linearized solution for 
the incremental displacements and the linear-elastic con
stitutive relation. If the total stress state l+A'o' y calculated by 
adding do' y to the known stress at time t leads to the con
dition 

l+A'F('+A'o'y,'ep)<0 (12) 
then elastic constitutive relations can be applied. If, on the 
other hand 

l+A'F('+A'o'y,'ep)>0 (13) 
then plastic deformation will occur and the constitutive 
relations must be modified to reflect this behavior. Reference 
[15] outlines this procedure in detail. In the analysis that 
follows, this process is the same regardless of whether the 
hardening modulus after yield is positive or negative. For a 
positive hardening modulus the yield surface expands, and for 
a negative hardening modulus it contracts. Although this 
discussion has been developed for infinitesimal strains and 
displacements, it is directly applicable to the more general 
case of large deformation, elastic-plastic analysis if 'oy is 
replaced by the Cauchy stress tensor at time t, 'ty, and bey is 
replaced by a logarithmic (or true) strain increment [14], In 
this analysis, the material behavior is approximated by a 
multilinear stress-strain curve with an initial Young's 
modulus, yield point, and post-yield strain hardening 
modulus. Equations (2), (3), and (11) represent the 
equilibrium, strain-displacement, and constitutive relations, 
respectively, which are applied within the context of the finite 
element formulation for problem solution. 

Finite Element Model 

An axisymmetric, tensile specimen with applied 
displacement loading shown in Fig. 2 is modeled in this 
analysis using eight-noded, two-dimensional isoparametric 
finite elements and the nonlinear finite element code ADINA 
which includes the effects of finite deformation. To insure 
accurate results for the load-displacement and neck con
traction predictions made here, the finite element size, ap
plied, incremental displacement size and convergence 
tolerances were all reduced until no variation in results was 
observed. Figure 2 illustrates the finite element mesh used for 
the numerical results presented here. As can be seen in Fig. 2, 
the shoulder of the tensile specimen was included in the 
model. As a by-product of this geometry, necking was always 
initiated at the center of the specimen without the necessity of 
including any geometric or material imperfection. Except 
where explicitly stated in the text, the material properties used 
for these analyses are also listed in Fig. 2 and are represen
tative of a ductile polymer such as polycarbonate. 

Journal of Applied Mechanics 

NONDIMENSIONAL CROSSHEAD DISPLACEMENT (d/d) 

Fig. 3 Nondimensional, load-displacement curves as a function of 
bilinear model hardening modulus 

Results and Discussion 

The mechanical relationships between constitutive 
behavior, onset of necking, and post-yield stability of the 
axisymmetric tensile specimen can be studied with the simple 
bilinear constitutive model shown in Fig. 2. Figure 3 
illustrates the load versus crosshead displacement behavior 
which is predicted as a function of the hardening modulus, 
E2, in the bilinear constitutive model. With elastic modulus 
and yield stress held constant at the values listed in Fig. 2, 
there is a significant difference in the post-yield, load-
displacement behavior as the value of E2 is varied from + 2oy 
to - 2oy. For a hardening modulus of 140 MPa (20 ksi), a 
value twice the yield stress, the load-displacement behavior in 
Fig. 3 is similar to that seen in many metals (titanium for 
example). As the load increases after yield, the deformation in 
the tensile specimen is homogeneous and plastic in nature. 
Based on the principal of incompressible plastic strain, it is 
well-known that a maximum in the load-displacement curve is 
expected when the true stress in the specimen reaches a value 
equal to the hardening modulus, d(a,)/3(e,). At that point a 
neck initiates and the load begins to decrease. When the 
hardening modulus, E2, is reduced to 69 MPa (10 ksi), a value 
equal to the material's yield stress, both the load-displacement 
and the deformation behavior are characteristically different. 
The maximum in the load-displacement curve now takes place 
at the yield point and the load decreases as the crosshead 
displacement increases in Fig. 3. In addition, there is no 
longer any region of homogeneous plastic deformation. 
Instead, localized necking occurs simultaneously with yield. 
As the hardening modulus is reduced below the value of the 
yield stress, the maximum load and neck formation are 
always coincident with initial yield, and the post-yield slope of 
the load-displacement curve becomes increasingly negative. 
This type of behavior is often visible in ductile polymers. 

As mentioned previously, a decrease in the true stress for 
increasing strain after yield has actually been measured for 
several polymers [5-7]. Fig. 4 plots the nondimensional slope 
of the tensile load-extension curve immediately after yield as a 
function of hardening modulus nondimensionalized by yield 
stress. The two curves in Fig. 4 represent materials with 
different values of ey and the material properties used to 
generate the points in each curve are shown in Table 1. 
Although the individual properties of materials A and B are 
all different, both have yield strains of 0.0333 (a value typical 
of many ductile polymers like polycarbonate). The points 
relating nondimensional post-yield slope ((AP)5j,/ (A8)/Py) to 
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nondimensional, hardening modulus E2/ay for materials A 
and B fall on the same curve. In contrast, materials C and D 
both have yield strains of 0.002, a magnitude more typical of 
metals. The data relating ((AP)5y/(A5)Py) to E2/ay for these 
two materials also fall on the same curve. However, the curve 
for materials C and D is significantly different than the one 
for materials A and B. Over the range of values shown in Fig. 
4, the nondimensional slope of the load-extension curve 
associated with a yield strain of 0.033 is much more negative 
than the slope of the curve for materials with a yield strain of 
0.002. Regardless of yield strain value, the slope of the load-

Table 1 Material properties used in Fig. 4 

Material 
A 

Materials 
B 

Material 
C 

Material 
D 

2.07 GPa 20.7 GPa 207.0 GPa 20.7 GPa 
(3.0xl05 psi) (3.0xl06psi) (3.0xl07psi) (3.0xl06psi) 

0.4 0.4 0.3 0.3 
68.9 MPa 689.0 MPa 414.0 MPa 41.4 MPa 

(10 ksi) (100 ksi) (60 ksi) (6.0 ksi) 
0.0333 0.0333 0.0020 0.0020 oy/El 

- I n . " 

Ill 
£y = 0.002 

1 1 

Jfl £y = 0.0333 

O Material A 

X Material B 

D Material C 

A Material D 

(Refer to Table 1) 

I I 

I 
-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 

NONDIMENSIONAL HARDENING MODULUS (Ej/o,) 

Fig. 4 Nondimensional load-displacement slope immediately 
following yield as a function of nondimensional hardening modulus 
(E2l(jy) and yield strain cy 

extension curve at yield is zero when E2/ay is equal to one. As 
the nondimensional hardening modulus decreases below one, 
the post-yield slope of the load-extension curve becomes 
increasingly negative. Therefore, under the assumptions of 
rate-independent flow theory, there will be a decrease in load 
initiated simultaneously with yield for any material with a 
hardening modulus at yield which is less than the yield stress. 
For those polymers that exhibit an actual decrease in true 
stress after yield [5-7] the decrease in load will be even more 
pronounced. 

For all values of E2 considered in Fig. 3, the load decreases 
monotonically after initiation of a neck, the necked region 
remains local and the cross-sectional area of the neck 
decreases continuously. As previously mentioned, both 
Vincent [1] and Hutchinson and Neale [8] point out that an 
upturn in the true stress-strain relationship is necessary for a 
neck to stabilize and propagate. To quantify the effects of this 
mechanism, a trilinear relationship between the true stress and 
natural strain shown in Fig. 2 is applied to the axisymmetric 
tensile test. For this investigation, values for Young's 
modulus (£, = 2.1 GPa) and yield stress (oy = 69 MPa) 
characteristic of polycarbonate were chosen and the secon
dary modulus was fixed at E2 = 0.0. The third stage modulus 
E3 and the amount of natural strain between yield and third 
stage hardening, ed, were varied parametrically. 

Figure 5 illustrates the predicted load-displacement 
behavior in the axisymmetric tensile specimen illustrated in 
Figure 2 for ed = 0.40 and a range of third stage moduli from 
E3 = 0.0 to E3 = 410 MPa (60 ksi). The case of £ 3 = 0.0 
corresponds to the linear elastic, perfectly plastic, bilinear 
case discussed earlier in Fig. 3 and shows a monotonically 
decreasing load associated with local unstable necking after 
yield. However, as E3 is increased to values of 140 MPa and 
greater, the load reaches a finite minimum and then remains 
constant for the crosshead displacements plotted in Fig. 5. 
Figure 6 illustrates the effect of third-stage hardening 
modulus (E3) in limiting the decrease in cross-sectional area at 
the neck. Here, nondimensional lateral contraction at the 
location of neck initiation (point A, Fig. 2) is shown as a 
function of nondimensional crosshead displacement. For 
values of £ 3 less than or equal to 100 MPa (15 ksi), the lateral 
contraction at p o i n t s increases without bound. However, for 
values of E} greater than or equal to 140 MPa (20 ksi), there is 
a limiting value for the lateral contraction of the neck. For 
values of E3 greater than 280 MPa (40 ksi), neither the load-
displacement curve in Fig. 5, nor the lateral contraction versus 
displacement curve in Fig. 6 shows much variation until the 
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Fig. 5 Nondimensional load-displacement curves as a function of 
trilinear model, final-stage hardening modulus E3 
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neck has propagated the entire gage length and the load begins 
to increase. Figures 7(a)-(c) illustrate the deformation of the 
specimen as predicted with the trilinear curve in Fig. 2 at three 
points in the load history of a material with E3 = 40 ksi. The 
crosshead displacements and loads corresponding to these 
points are defined in Fig. 5. In Fig. 7(a), the specimen has 
yielded, the neck is just beginning to form, and the load is 
decreasing. The necking process continues with local decrease 
in the neck cross-sectional area until natural strains larger 
than ey + ed are incurred and third-stage hardening begins in 
the original neck area as illustrated in Fig. 1(b). The increased 
stiffness of the material in the original neck cross section 
stabilizes the necking process there and forces adjacent 
material to yield. As this process continues, the neck 
propagates along the length of the specimen as shown in Fig. 
7(c). When the neck covers the entire gage section of the 
specimen, the final increase in load visible in Fig. 5 will occur 
prior to failure. 

Although there is an "upturn" in the true stress-strain 
relationship for any finite, positive value of E3 in the trilinear 
model applied here, there is a threshold value of E3 below 

-

E3 = 0 , 

1 1 

E3 = 69 MPa 
/ (10 ksi) E | _ 2 1 G P a ( 3 0 x 10s p s i ) 
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Fig. 6 Nondimensional lateral contraction at point A of Fig. 2 as a 
function of trilinear, final-stage hardening modulus E3 
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which neck propagation still does not occur. For E3 = 69 
MPa (the yield stress of this material) the load still 
monotonically decreases with increasing crosshead 
displacement. Vincent's one-dimensional arguments suggest 
that a neck will begin to propagate when the tangent modulus 
at a given strain exceeds the true stress value at that same 
strain. In the present three-dimensoinal analysis of the 
necking process, a local minimum in the load-extension curve 
does appear for E} = 100 MPa (1.5 times the yield stress), as 
can be seen in Fig. 5. However, the reduction in cross-
sectional area shown in Fig. 6 is never limited and as ad
ditional crosshead displacement is applied, the load again 
begins to decrease. Finally, when E} > 140 MPa (twice the 
yield stress) the load-extension behavior predicted for this test 
retains stability over the entire range of crosshead 
displacement plotted. 

Figure 4 illustrated the dependence of the post-yield slope 
of the nondimensional load-diplacement curve on the ratio of 
the hardening modulus to yield stress of a bilinear material 
model. In a similar manner, the ratio of the third-stage 
hardening modulus to yield stress is a controlling factor in 
establishing the stable or unstable nature of the necking 
process. Figure 8 shows the nondimensional load (P/Py) as a 
function of nondimensional displacement (8/5y). The two 
curves shown in Fig. 8 were predicted using the material 
properties shown in Fig. 2 with third-stage hardening moduli 
of 100 MPa (15 ksi) and 140 MPa (20 ksi). Also shown in Fig. 
8 are data points predicted numerically using a trilinear 
material representation defined by 

4.1Gpa(6.0xl05psi) (14a) 
140 MPa (20 ksi) (146) 
0.4 (14c) 
0 (I4d) 

0.40 (14e) 

E = 

E, m 

e,i 

"210 Mpa (30 ksi) 

280 MPa (40 ksi) (14/) 

Since the values of yield strain and the ratio of initial hard
ening modulus to yield stress (E2/oy) are idenical for these 
four materials defined in Fig. 8, the immediate post-yield 
slopes associated with these four different sets of material 

B _ ,B . 

Fig. 7 Effective-stress contours during stable neck propagation 
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properties are identical. In addition, for materials with equal 
values of ey andE2/oy, it is also clear from Fig. 8 that the very 
large strain, post-yield, load-displacement performance will 
be identical for equal values of'E]/oy. 

Finally, Fig. 9 illustrates the effect of draw strain, ed, 
defined in Fig. 2, on the nondimensional load-displacement 
behavior of a tensile test. The curves in Fig. 9 are based on a 
trilinear material model defined by Ex =2.1 GPa, oy = 69 
MPa, E2 = 0, and E3 = 280 MPa. The draw strain, ed, is 
varied between 0.00 and 0.60. Lower values of ed result in 
smaller load reductions prior to stabilization and less overall 
crosshead displacement prior to final stiffening. The reduced 
crosshead displacement at stabilization is, of course, 
associated with less cross-sectional area reduction in the neck, 
as can be seen from the curves of nondimensional lateral 
contraction versus nondimensional displacement in Fig. 10. 
For the case ed = 0, the trilinear model degenerates to a 
bilinear nature. Since 

E0 =E* >o-v (15) 
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in this case, there is neither a decrease in load nor formation 
of a neck immediately after yield. Instead, there is a region of 
homogeneous yielding which would continue until 

o,=E2 (16) 
at which time a maximum in the load-displacement curve 
would appear. 

Conclusions 

A J2 yield criterion and time and temperature-independent 
flow theory of plasticity have been applied to study 
characteristic phenomena observed in tensile tests of some 
ductile polymers. The use of a simple, trilinear relationship 
between true stress and natural strain provides the advantage 
of a clear investigation into the mechanical effects of the 
parameters which govern the general shape of the constitutive 
relation. It is shown that for this constitutive model a decrease 
in load after yield does not require a negative slope in the 
curve relating the true stress to natural (logarithmic) strain 
after yield. The slope of the nondimensional load-
displacement curve immediately after yield is governed by the 
yield strain (ey) and the ratio of true stress after yield, the 
slope of the load-displacement curve after yield will be more 
negative. Insight into whether the neck formed after yield will 
remain local and unstable or propagate stably along the length 
of the specimen requires consideration of potential increases 
in the hardening modulus for large strains. For simple 
trilinear, elastoplastic material models considered here, the 
local or propagating nature of a neck is determined by the 
ratio of third-stage hardening modulus to yield stress, E3/ay. 
Finally, the draw strain, ed, between yield and final hardening 
in such a model will determine the magnitude of the drop in 
tensile load as well as the total amount of elongation at 
constant load observed in the test. 

Some aspects of polymer behavior are clearly not included 
in the present study. For example, many polymers are 
associated with yield criteria that show hydrostatic stress 
dependence. In addition, time and temperature effects are 
often substantial. Finally, the third stage-hardening, which 
has been shown to be so important in this study, has been 
explained elsewhere using a mechanism of polymer chain 
orientation raising questions of anisotropy which are not 

treated within the context of this model. However, it is clear 
that many of the characteristic phenomena associated with 
yield, neck formation, and cold drawing of ductile plastics 
can be predicted within the context of time and temperature-
independent flow theory of plasticity. The basic mechanisms 
behind this observed behavior in tensile tests will also have 
significant effects on performance in energy absorption 
applications as well as suitability for cold forming processes. 
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Oscillatory Structured Shock 
Waves in a Nonlinear Elastic Rod 
With Weak Viscoelasticity1 

The propagation of longitudinal shock waves in a thin circular viscoelastic rod is 
investigated theoretically as the counterpart of the torsional shock waves previously 
considered in [1, 2]. Assuming a "nearly elastic" rod, the approximate equation is 
first derived by taking account of not only the finite deformation but also the lateral 
contraction or dilatation of rod. The latter gives rise to the geometrical dispersion, 
which is taken in the form of Love's theory for an elastic rod. Taking two typical 
relaxation functions, the structures of the steady shock waves are investigated in 
detail, one being the exponential function type and the other the power function 
type. The effect of geometrical dispersion is emphasized. Finally a brief discussion 
is included on the simplified evolution equations for a far field behavior. 

1 Introduction 

Viscoelastic waves exhibit not only dissipation but also 
dispersion.2 In an unbounded body, this dispersion results 
from the viscoelastic properties of materials themselves. In a 
bounded body, however, there appears the geometrical 
dispersion in addition to the material one. The former 
dispersion, which results from the presence of a boundary, 
plays an important role different from the material disper
sion. This paper considers the propagation of longitudinal 
shock waves in a thin circular viscoelastic rod as the coun
terpart of the torsional shock waves previously treated in [1, 
2].3 Emphasis is placed on the effect of geometrical dispersion 
which does not appear in the torsional case. It is considered 
rather exceptional that the torsional waves are geometrically 
nondispersive in spite of the presence of the boundary.4 

Suppose the same thin circular viscoelastic rod as con
sidered in [1, 2] is subject to a small but finite longitudinal 
deformation along its axis. The "nearly elastic" behavior is 
stipulated by the constitutive equations in which the elastic 
response is taken up to the second order in strain, while the 
viscoelastic one is taken in the form of the linear hereditary 
integral. After the similar procedure to that developed in [1], 

A part of this paper was presented at the IUTAM symposium on 
"Nonlinear Deformation Waves" held at Tallinn, Estonia U.S.S.R. in 1982. 

Waves are said, in a wide sense, to exhibit dispersion when a phase velocity 
depends on a frequency (or a wave number). Then dispersion includes both 
dissipation and "pure dispersion." By dispersion here, however, we mean 
"pure dispersion" and distingush it from dissipation. 

By a "shock wave" in this paper, we mean a smooth transition layer caused 
intrinsically by the nonlinearity (see also the footnote 1 in [1, 2]). 

4 Since the thin rod, i.e., long wave is concerned, only the lowest mode is 
selected in [1, 2]. In addition to this nondispersive mode, of course, there exist 
the dispersive higher modes [3]. 
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10017 and will be accepted until two months after final publication of the paper 
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Applied Mechanics Division, November, 1983; final revision, February, 1984. 

the approximate equation is first derived. The free lateral 
surface of the rod allows a contraction or dilatation of a cross 
section, which gives rise to the geometrical dispersion. This 
effect is included in the form of Love's theory for an elastic 
rod [4]. 

Assuming the same two types of relaxation functions as 
those considered in [2], the structures of the steady shock 
waves are investigated in detail; one is the exponential func
tion type corresponding to the Maxwell-Voigt model and the 
other the power function type. A comparison is made between 
the effect of geometrical dispersion and that of material one 
on the shock profiles. Finally the derivation of the simplified 
evolution equations for a far field behavior is discussed. 
Appendix 3 includes a brief discussion on the plausible ex
perimental conditions for the shock wave propagation. 

2 Formulation of the Problem 

The formulation of the present problem is the same as that 
used in [1]. But since no circumferential displacement is 
assumed here, the basic equations are simplified considerably. 
Using the same notation as in [1], the dimensionless equations 
of motion are given in the r, 6, z cylindrical coordinates by 

ur.„ = (rLrr)ir/r-Lee/r+LrZyZ, (1) 

uz,„ = {rLzr)<r/r+Lz (2) 

vit 

~L 
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~\+ur%r 
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"z.r 
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where ur and uz are, respectively, the r and z components of 
the displacement vector and Ly (^Lj,; /**j) and Ky (= Kj,) (/', 
y=r , 6, z) are Lagrangian and Kirchhoff's stress tensors, 
respectively. A partial differentiation is designated by a 
comma " , " , t being the time. All quantities appearing here 
and hereafter have been normalized by appropriate 
characteristic values; a density is normalized by p0 in the 
reference state, a length scale by a characteristic length L 
associated with a thickness of a transition layer, and a velocity 
by V = (S/p0)

U2, S being a characteristic modulus. Also the 
time and the stress are naturally normalized by LI V and S, 
respectively. In Appendix 3, some possible choices for these 
quantities are shown. In (l)-(3), we note that Kr0 and KH 

vanish from the axisymmetry with ue = 0 so that Lre, Lgr, 
L6z, andZ,,.9 also vanish. 

The constitutive equations for the "nearly elastic" solids 
are given in terms of Lagrangian strain tensor Ey as 

K-,j = k i Emm 8jj + k2Eij + (/, EmmE„„ 

+ liEmnEmn)bij + hEmmEij + l4EimEmj 

+ y\'.0o[K1(t-ti)E,m„,,l8u+K2(t-tl)EUJl]dtl 

+ 0(EjjyEjjUi,j=r,e,z), (4) 

where £, (/= 1, 2) and /, (/= 1, 2, 3, 4) are the elastic moduli in 
the equilibrium state and 7 is a small parameter (0 < 7 « 1) 
for a measure of weak viscoelasticity. Here the summation 
convention is used and t{ implies the time variable in the past. 
For the present problem, Ey are given by 

2E„ = 2u,,r + («,,r)
2 + («Z,A)2, 2Em = 2u,./r + (ur/r)\ 

2Ezz = 2u„ + (u,z)
2+(u,z)

2, 

2Erz = uFiZ + uZJ + un,.ur_z + uZy,.uz 

and 
Erg=Eez = Q. (5) 

The relevant boundary conditions for the free lateral 
surface are given by 

Lrr=Lzr = 0, at r=e, (6) 

or equivalently by 

Krr=Krz=0, at r=e, (7) 

where e denotes the normalized radius of the rod, which is 
assumed to be sufficiently small compared with unity (0 < e 
« 1). The boundary conditions at both infinite ends will be 
specified later. 

3 Derivation of Approximate Equation 

A derivation of the approximate equation is quite similar to 
that used in [1]. In addition to the two small parameters e and 
7 (0 < e, 7 « 1) designating, respectively, the thinness of 
rod and the weakness of viscoelasticity, we introduce another 
small parameter 5 (0 < 5 « 1 ) , which measures the 
magnitude of characteristic axial displacement (or strain). 
These parameters are mutually independent and their lowest-
order terms are assumed more prominent than any other cross 
terms among them. Making use of these parameters as a 
guideline in reduction of the basic equations, we seek the 
displacement in the power series expansion of the radial 
coordinate r (see Appendix 1 in [1]): 

«r = 5(t41V + t43V3+ . . .), 

«, = 6(«f + «<2V2 + u<4»/-4 + . . .), 0 < r < e , (8) 

where the coefficients of expansion are functions of z and t 
and r should be regarded as O(e). Now that 5 indicates the 
order of deformation under the proper normalization, each 
coefficient and it's derivatives with respect to z and ;• are 
assumed to be of O(l). Here it should be noted that because 

the expansion (8) is made with respect to r, the coefficients 
involve the small parameters e, 5, and 7 in addition to z and t. 

Introducing (8) into (5), (4), and (3), the terms are ordered 
with respect to the two parameters 5 and 7 together with the 
radial coordinate r. In Appendix 1, we only give the explicit 
form of Ky. First, applying the boundary conditions (7), we 
have readily the lowest- order expressions for wj.1' and uz

2) in 
terms of w'0).• 

« ' "= -*i/(2Ar, +Ar2)<l + 0(e2 ,6,7)= -aW<°)+0(e2,6,7), 

y(2) = -M( ;) /2 + 0(62,5,7) = ff^/2 + 0(e2 ,5,7), (9) 

where a [= k1/(2kl+k2)] denotes Poisson's ratio. Sub
stituting wj." into Lzz and taking the lowest-order terms of 0(5) 
only, we have the equation for uf> from (2): 

=E-r^- +0(e2,5,7), 
dt2 dz2 (10) 

where E denotes Young's modulus defined by E = 
(3kl+k2)k2/(2ki+k2) = (\ + a)k2. This well-known 
equation describes the lowest-order behavior of uf> in z and t. 

Next evaluating the neglected terms of 0 (e 2 , 5, 7) in (10), 
we derive the approximate equation that takes account of the 
effect of geometrical dispersion, finite deformation, and 
viscoelasticity. To do so, Lzz and Lzr in (2) are specified up to 
the next higher-order terms of 0(5e2, <52, 67) and of 0(8e3, 
82e, §67), respectively. But so far as our present purpose to 
derive the equation is concerned, the explicit form of Lzr is 
unnecessary if an averaged form of (2) over a cross section is 
used. Indeed integrating (2) from r = 0 to r = e after 
multiplying by r, Lzr is removed by the boundary condition. 
Then we have the equation for the balance of the total axial 
momentum over the cross section: 

\aUz,nrdr = \0Lzzzrdr. (11) 

For the evaluation of Lzz and therefore Kzz up to 0(be2, b2, 
8y), we must specify u^ up to the next higher-order terms and 
M£3) to the lowest. Although this procedure is a little involved, 
they are straightforwardly obtained from the equation of 
motion (1) and the boundary condition (7). Using (9), it is 
found that Lrr and Lm are of 0(5e2 , 52, by), while Lrz of 
0(6e3 , b2e, bey). The lowest-order terms in (1) are of O(Se). 
From this order, we have after some calculation, 

CT(1-2<72) 
y < 3 ) : 

M2(l-o
2) z'"z ufjlz+0(e2,b,y), (12) 

where the relations (9) and (10) have been used to express «P' 
in terms of u{0) only. Also using K„ = 0 at r = e and (12), we 
evaluate 

«<» = aufl + e2 a(l-2<j)(3-2a2) 

8£2(l-ff2) 
"zMz 

b V oE - ^ [ y + ( l - 2 , ) 3 

/, +(1 -2<T)(1 +2<r2)/2 -a{l -2<j)2l3 

+ a 2 ( l -2a ) / 4 W°>) 2 

,[il-2a)2Kiit-t1) V~ 
-o(i-2a)Jir2(/-/1)]i#<%1rf/l 

+ 0(terms of higher order than e2, 5, 7). (13) 

By using these expressions, Lzz can be evaluated in terms of 
uf> uptoO((5e2, 52, by). Substituting it into (11) and retaining 
the terms of 0 ( e 2 , 5, 7), we have finally the approximate 
equation for M<.0) : 
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d2uf> _ d2uf e V 9 ^ f d / duf \ 2 

" a ^ ~ £ az2 + 2 ar2az2 + dz \ dz > 

+ 0(terms of higher order than e2, 5, 7) with 

C = 3 £ / 2 + (l-2<7)3/, 

+ (l-2ff)(l+2ff2)(/2+/3) + (l-2(73)/4, 

and 

K(t) = (1 - 20-)2/:, (0 + (1 + 2o2)K2(t). (14) 

Here the effect of geometrical dispersion is taken in the form 
of the fourth-order derivative, which is nothing but Love's 
theory for an elastic rod [4]. The constant C is determined by 
the nonlinear elastic behavior which may be positive or 
negative depending on the magnitude of the second-order 
elastic moduli /, (/ = 1, 2, 3, 4), while K{t) denotes the stress 
relaxation function. Strictly speaking, E + 7^(0 is equivalent 
to the tensile stress relaxation function Y{f) in the linear 
viscoelasticity. Indeed since 7(0 = 9G(t)B(t)/[G(t) + 3B(t)] 
where G{f) and B(t) are, respectively, the shear stress and the 
bulk relaxation functions [5], the equivalence is seen by 
setting G(t) = [k2 + yK2(t)]/2 and B(t) = [ik\ 
+ k2 + 7(3^1 +^2)1/3 and taking the terms up to 0 (7 ) . In the 
following analysis, two types of relaxation functions treated 
in [2] are considered for K(t): 

Type I: K(t) = exp{-nt), (15) 

Typell: K(t) = t~r, ( 0 o < l ) , (16) 

where K ~' (> 0) implies a characteristic relaxation time. 
Here we examine the linear dispersion relation of (14) for 

both types. Assuming uf1 in the form of exp[/(ta — oit)], k and 
03 being a wave number and a frequency, respectively, the 
phase velocity c ( = w/k) for Type I is given by c2 = E— 
(e<7co)2/2 + 7/(l +/K/CO), while for Type II, c is given by c2 = 
E-(tou)2/2 + yT{\-v){-io}y, T(l - v) being the gamma 
function. For the low frequency limit 01—0, c approaches the 
equilibrium sound speed Exn for both types. For the other 
high frequency limit co— 00, the geometrical dispersion 
becomes infinitely large. But within the present theory for the 
thin rod, a wavelength 2t/k should be sufficiently long 
compared with e and therefore oi~Ex/2k«0(e~l). In other 
words, we are concerned with the weak geometrical dispersion 
and the strong case is excluded. Thus if w is taken large but 
still less than e~', c is given by c2 = E— (eoo))2/2 + 7 for Type 
I ( K « O ) « 6 ~ 1 ) , whereas for Type II, it increases indefinitely 
by the material dispersion. Thus a notion of the instantaneous 
sound speed loses its meaning in the present theory. This 
should be compared with the case of the torsional waves [2]. 

4 Structure of Steady Shock Waves 

We consider the steady shock solutions to equation (14). 
Let a shock wave propagate into the unstrained state far 
ahead (z— 00) and let a constant equilibrium strain state 
prevail far behind the wave (z 00). Assuming that uf 
depends on z and t only through r\ = t—z/\, A(>0) being a 
constant representing a shock velocity, it follows from (14) 
that 

d2w (1 dw 
Vw-w2-^ - n = \ Kto-vA — drn, (17) 

d-qz J - °° dr\ j 

with the boundary conditions 

w—Oas ij— -oo , and w~wa ( = const.)as rj~<x>, 

where w = -dC/iy^duf/dT,, V = (\2-E)/y, and /x' = 

(ecr)2/(27). If e„ = - \~' (rfw<0)/rfr;),=oo is taken as a strength 
of the shock wave,5 vc„ is given by (8/y)Cex. It should be 
noted that for the same w„, which will be shown later to be 
positive, the difference in sign of C results in physically the 
compression for C < 0 for the expansion for C > 0 . 

4.1 Existence Conditions of Steady Shock Waves. 
Following the same way as in [2], we first examine necessary 
conditions for the existence of steady shock waves. Assuming 
a finite equilibrium value w^ at 17= 0°, we integrate (17) after 
multiplying it by dw/dt). Then we have 

rW2
O 0--wL=(27r)1 / 2(O° K(y) \w' (y) \2dy=A, (18) 

where w'(y) and K(y) denote, respectively, the Fourier 
transform of dv/ldt) and K( \-q\)h(ri) [2], h(rj) being a unit step 
function, and^4 is given by 

i °° K 

—0 T \w'(y)\2dy>0 for Type I, (19) 
-°° y + / r 

and 

/ l = r ( l - i > ) s i n ( y ) f b l " " 1 lw'0<)l2rf>>>0, 

for Type II. (20) 

On the other hand, first differentiating (17) with respect to »/ 
and multiplying it by w, we also integrate to have 

^wl-^wl=-A. (21) 

If A remains finite, then it is found from (18) and (21) that w„ 
= Kand A = K 3 /6>0. For the existence of A, the asymp
totic behavior of w'(y) as y~0 and l_y I — 00 is responsible. 
For the limit .y—0, w' approaches w„/(27r)1/2 and the integral 
remains finite there. For the other limit as lyl—00, w'(y) 
behaves at most \yl ~2 because only a smooth solution is 
possible in (17) owing to the second derivative. Thus A is 
found to exist. Since A is positive, Fand w„ must be positive. 
Hence in the following analysis, it is assumed that V is 
positive. From this, the velocity is always greater than the 
equilibrium sound speed EW2 and it becomes faster as the 
strength of shock wave w„ (or e„) increases, i.e., X2 = E + 
yw00=E+8Ce00>E. 

4.2 Exponential Function Type. In this case, equation (17) 
is reduced to the following differential equation: 

d*w d2w dw 

'"W +^^^-+(2M'-F+1)^-(f/-M')vv=0'(22) 
where f = /cr; and the effects of geometrical dispersion n' and 
of the characteristic relaxation time K~1 are combined into 
one parameter defined by /x = «2/i'. Because analytical 
solutions of (22) are difficult to obtain, their asymptotic 
behavior is first discussed and numerical solutions are sought 
later. 

The equilibrium points of (22) are w = 0 and w = V = w„, 
which should correspond to the boundary conditions at r\ = 
-00 and 77 = 0°, respectively. To see the asymptotic behavior 
about w = 0, we linearize (22) about it and assume w in the 
form of exp(pr?). Then the characteristic equation for p is 
readily obtained: 

D(p) = (fip
2-V)(p+l)+p 

= lxpi+lxp2-(V-l)p-V=0. (23) 

The investigation of roots clarifies the asymptotic behavior in 

Note that s„ is not exactly equivalent to Ezz at z = — 00 [Ezz = &ex + 
(Sec )2/2]. 
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Fig. 1 Conditions for three negative roots; the dashed lines represent 
H = 3(V + 1)and/i = 9/2 - 9 1 / , respectively 
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Pig. 2 Shock profiles for Type I with V = 1 and the various values of /i 

the three-dimensional phase space (w, dw/dri, d2w/dt]2) [6]. 
Since Kis positive, it is clear that (23) has always one positive 
root and that the other two roots are both negative or complex 
conjugate pair. If D(p) has a positive maximal value, i.e., the 
condition 

2(9/2 + 9 K - ^ ) ^ b + 3(K-l)]3 (24) 

is satisfied, the two roots are negative. Then the equilibrium 
point w = 0 is a saddle point. Otherwise the two roots are 
complex conjugate whose real part is negative because the 
sum of the three roots is - 1. Then the point w = 0 is a saddle-
focus. In either case, there always exists one branch satisfying 
the boundary condition at ij = -co. Here it should be 
remarked that if /x is set equal to zero in (22), it is easily found 
that there is no asymptotic branch for V i? 1. In this case, the 
nonuniformity between \x, = 0 and /*—0 occurs. This just 
corresponds to the torsional case with U ^ 1 in which the 
discontinuous solution is introduced to fit the boundary 
condition at r\ = - °° [2]. But when the geometrical 
dispersion exists, no matter how small it may be, a discon
tinuous solution is excluded and there always exists one 
asymptotic branch from ij = — oo. This is the essentially 
important effect of geometrical dispersion which has not met 
in the torsional case. 

For the other equilibrium point w = V = tv^.on the other 
hand, linearizing of (22) about w = V yields the characteristic 
equation: 

D(p) = (w1+V)(p+\)+p 

= /xp3+HP2+(V+ \)p+ V=0. (25) 

It is found that for V>0, (25) has three negative roots greater 
than - 1 or one negative root greater than - 1 and complex 
conjugate pair whose real part is negative. If the condition 

lil/2\9/2-9V-n\£[n-3(V+l)]3/2, (26) 
is satisfied (shaded area in Fig. 1), all the three roots are 
negative and greater than - 1. Then the point w„ is a nodal 
point. Otherwise it becomes a focal point. In each case, all 
three branches can satisfy the boundary condition at 17 = 00. 
Thus the asymptotic analysis suggests that for V>0, a 
solution increases exponentially from 77 = - 00 and tends to 
the equilibrium value vv„ as 17 — 00. From the behavior around 
w„, the complex roots imply the oscillatory profile, while the 
negative roots imply the monotonic profile. In the case with 
one negative root and complex conjugate pair, there may 
appear a monotonic profile, but an oscillatory profile appears 
generally because all three branches may be excited. Hence the 
geometrical dispersion makes profiles oscillatory. This effect 
should be distinguished from that of material dispersion 
which only makes profiles monotonic just as in torsional case 
[2J. 

We now show the numerical solutions of (22). In Fig. 2, the 
typical shock profiles are shown for w„ = V = 1 and fx = 
0.5, 3, and 5, respectively, where the coordinate axis is chosen 
so that w may take vv^/2 at rj = 0. As is suggested from the 
foregoing asymptotic arguments, the oscillatory shock 
profiles appear. They first step up exponentially from r\ = 
— 00, then overshoot the equilibrium value vv„, and approach 
exponentially w^ while oscillating around it. As \x, increases, 
the oscillation becomes prominent, while as it decreases, the 
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30 1 
Fig. 3 Shock profiles for Type II with V = 2, v = 0.5, and the various 
values of ft 

Fig. 4 Shock profiles for Type II with V 
values of !• 

2, n = .5, and the various 

step-up behavior becomes steep. For greater values of V, 
qualitative behavior is similar and an oscillatory profile 
appears. As Vincreases, it is found from the roots of (23) and 
(25) that a step-up behavior becomes steep and a rapid 
oscillation appears. For weak shock waves ( 0 < F « 1 ) , on 
the other hand, a monotonic shock profile appears for /x&4 
but an oscillatory profile appears again for O < ix £ 4 (see 
Fig. 1). 

4.3 Power Function Type. Equation (17) in this type 
remains the integrodifferential equation: 

Vw-
d2w r 

»dV2=\-
1 dw 

» (v-ViY drjt 
dVlX0<v<\), (27) 

here and hereafter the prime in /x' is omitted. This equation is 
solved numerically by the similar method of quadrature to 
that in [2]. For the treatment of infinite lower bound of in
tegration, the region ( - oo, rj\ is divided into two parts ( - oo, 
M] and (M, rj\, M being arbitrarily fixed, and the following 
asymptotic solution is assumed valid to evaluate the integral 
i n ( - o o , M ] . 

We note here that putting d w/d-q = v, (27) can be rewritten by inversion as 
the simultaneous integral equations: 

r ( l - « ) I » w = j , _ 0 o [Vw(Vl)-
w2(VO-Mvi)Viv-Vi)1~''d7,i and w = 

i-oo (rl~V])v(jl])dvi • After the same scheme as in [2], the numerical com
putations were carried out but the numerical instability occurred in this case. 

w~ w(1)exp[p(?j — M)] 

+ w^2e\p[2p(7,-M)]/D(2p) + 0(w^3), (28) 

where w(1) is a small constant (0<w ( l ) « 1 ) and p is the 
unique positive root of the equation D(p) = V— fip2 - T(l -
%>"=(), p" being defined by taking the principal value, i.e., 
- 7r < arg p= IT. For the treatment of divergence of the in
tegrand at the upper bound, on the other hand, the "modified 
Simpson's rule" is applied. But since (27) involves the second 
derivative, it cannot be reduced to a single integral equation 
by inversion unlike the case in [2]. Putting dw/dri = v, the 
following simultaneous equations are solved:6 

Vw- dv f 
» (77-7),) ' 

v(.vi)dvi 

di\\ 

(29) 

The derivative dv/dt] is approximated by a finite difference. 
This is the main difference from [2]. The scheme to calculate 
w is given in Appendix 2. 

In Fig. 3, the typical profiles of w are displayed with w„ = 
V = 2 and v = 0.5 for the various values of ix. Due to the 
geometrical dispersion, the shock profiles become oscillatory 
just as in Type I. But they do not overshoot the equilibrium 
value but undulate below it. Also there appears the slow 
relaxation region in the trail. Owing to the properties of the 
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relaxation function of Type II, the profiles are smooth 
themselves even if the geometrical dispersion would be 
neglected [2]. Consequently the effect of the second derivative 
in (27) does not appear so remarkably as in Type I. The 
asymptotic behavior of profiles as 77—00 is almost the same as 
that with /x = 0 irrespective of the values of /t. 

For other values of V, fi, and v, the shock profiles are also 
similar. As V increases or ^ decreases, the step-up behavior 
becomes steep. This is also understood from the asymptotic 
solution (28). As for the oscillation, it becomes prominent as 
/x increases, while as it decreases, the profiles become 
monotonic and tend to those with it = 0. Incidentally we 
remark that there is no nonuniformity between n = 0 and 
it—0. This is also seen from (28) that for any positive values 
of V and tt, there always exists the asymptotic branch from r/ 
= -oo . Finally in Fig. 4, the profiles are shown for the 
various values of v with V = 2 and tt = 5. Although the step-
up behavior is almost the same, it is interesting to see that the 
smaller v produces a pronounced oscillation. 

5 Simplified Evolution Equations 

In parallel with the discussion in [2], here we derive the 
simplified evolution equations for a far field transient 
behavior. Introducing the new coordinate £ = t—z/E[/2 

moving with the velocity E'/2 and the stretched coordinate r 
= 8z/El/2 instead of z and t, (14) is reduced by retaining the 
lowest-order in e2, 5, and 7 to 

dW CW dW e V d3W 

!fr~ ~E~ ~W~~45E~d^r 

7 3 f« dW 
= d b « KU-^ — dlu (30) 

28E o£ J -°» d£, 
where W = -E~W2 uf\. For Type I, (30) is recast into the 
differential equation. Particularly if the rapid relaxation is 
assumed, i.e., K ~ ' ~ 6 7 7 « 1 , we have the usual K—dV-
Burgers' equation with the right-hand side of (30) replaced by 
yW, {{/(25£'/c) [7], For Type II, (30) can be interpreted as a 
"generalized K— rfF-Burgers' equation" by using the 
definition of the derivative of real order v [2]. 
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A P P E N D I X 1 

Expicit form of Ku (i,j = r, d, z): 

K„ = 5 ( AT, a + (2k x + k2)b + 5[(Ar, /2 + l2)a
2 

+ (kx+ k2/2 + 2/2 + lA)b2 +/ , c2 +13 be] 

+ y^<x[K1a],l+(2Ki+K2)bili]dt1 

+ [(4kx+lk2)urV+k,uW]r2), 

Kee=Krr-2&k2ufh2, 

Kzz = 8[(kl+k2)a + 2klb + 8[(kl+k2+2l2+2l4)a
2/2 

+ (kl+2l2)b
2 + llc

2+liac] 

+ y\'_0,l(Kl+K2)a,,l +2Kibill]dtl 

+ [4klur» + (kl+k2)uz
2l]r2}, 

Krz = 8k2(b,z+2uz»)r/2, 

Kre=Kez^0, (31) 

with a = ufl, b = «<", and c = a + 2b, where terms neglected 
in K„, Km, and Kzz are of 0(8e\ 8\ 8e2y), while those in Krz 

ofO(Se\82i,8ey). 

A P P E N D I X 2 

The numerical calculation is carried out in the region [M, tj\ 
by taking the equidistant points ?jw (/ = 1, 2, 3, . . .) 
separated by a small interval h, i.e., 17*° = M + (i-l)h. 
Denoting w and v at 77 = r/(0 by w(/) and v{i), respectively, the 
scheme to calculate unknown ww and u(0 from the known ww 

and v^ (j = 1,2 / — 1) is summarized as follows: 

ywm _ w<02 _ JL 
6h 

(-2f<^3 ) +9y('~2> - 18I/''-1) + Hi/") 

(2 - v)(3 - v) 

1 — v 

and 

W« = / 3 + / 4 + (y('-2) +4y('--D + yW), (32) 

where / ,-( /= 1,2,3,4) are given by 

J - - (ij-Vi)" 

= wWp"^P[p(-n-M)]T[l - p,p(rj-M)] 

+ T V - ^ expl2p(V-M)]T[l - v, 2p(r,~M)] + 0(w">3), 
D(2p) 

P(,'-2) v(Vl) ^ 
/2 = L oF^*"' 
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fM 
I} = v(v,)drj, =w^ + wm2/D{2p) + 0/w^), 

J —00 

/ 4 = t>0» ,)</»»,, ( 33 ) 
J Af 

where the derivative dv/d-q is approximated by a four-point 
finite difference and T [1 - v, p(t)—M)] denotes the incomplete 
gamma function. By eliminating i/° from (32), the quadratic 
equation for vrw is solved step-by-step. Here it should be 
remarked that the error involved in the four-point difference 
is of 0(h3), whereas the "modified Simpson's rule" and 
Simpson's rule involve the error of 0(hA~") and 0(h5) in the 
2h interval, respectively. The accuracy of the finite difference 
could be improved by adopting the five-point finite dif
ference, etc., but it is judged unnecessary from the numerical 
results. In the numerical computations, h is chosen as h = 
0.001 while the first two terms in (28) are employed with w(1) 

= 0.0001. 

A P P E N D I X 3 

Plausible Experimental Conditions 

Here we discuss the experimental conditions under which 
the propagation of shock wave is observed. A shock wave is 
produced by an impact loading at one end of the rod and its 
steady propagation is expected to be realized far downward 
along the rod. For this to be observed, a length of the rod is 
required to be sufficiently long. At the present stage, 
however, it is impossible to estimate quantitatively a position 
where the steady propagation will be achieved. To clarify this 
problem, an initial and boundary value problem to the 
equation (14) must be solved. 

In the following, we show plausible experimental con
ditions. As a typical example of viscoelastic solids, the 
polymethyl methacrylate (PMMA) is considered. Many 
experimental data on PMMA are available from the papers 
[8, 9] and the papers cited therein. 

diameter of the rod : D = 2 x 10 ~2 [m], 
characteristic length (which corresponds to an interval l / \ in 
the dimensionless 17) : L = 5xl0"2[m], 
characteristic velocity (equilibrium shear veocity (S/p0)

1/2)7 

: V= 1.4X103 [m/s], 
characteristic time T( = L/V, which corresponds to a unit 
interval in the dimensionless 77) : !T=3.6x 10~5[s], 
normalized radius e( = D/2L) : e = 2x 10"' ~O(10-'), 
characteristic axial strain : 5 = O(10~2)~O(10~3), 
weakness of viscoelasticity : 7 = O(l02), 
Poisson's ratio (calculated from the longitudinal and shear 
acoustic velocities) : a = 0.33, 
coefficient of geometrical dispersion : fx' = O(l)~O(10_1). 

Here the order of 7 is roughly estimated from the data on the 
longitudinal relaxation function (which corresponds to kx + 
k2 + y(Ki + K2) in our notation) [9]. In [8] and [9], the 
characteristic time T and the characteristic relaxation time T 
are estimated, respectively, as 10"7 sec. and 2xl0~7 sec. 
under the assumption of a single exponential function type. 
Then the normalized relaxation time K~[ ( = T/T) becomes 2. 
On the other hand, we are concerned here with much slower 
characteristic time scale T = 3.6xl0~5 sec. as tabulated in 
the foregoing. If one measures the relaxation time T by this 
slower time scale, one obtains K~' = 6x 10~3, which means 
that the relaxation is completed very rapidly over the present 
time scale. For actual solid polymers, however, there will 
appear subsequent slow relaxations even measured by the 
present slower time scale. To describe such a slow relaxation, 
not only a single exponential function but also even a number 
of exponential functions are not sufficient to cover such a 
wide time range. This is the reason why we introduce a new 
type of a relaxation function expressed by a power function 
which has a continuous relaxation spectrum in [2] and also in 
this paper. 

In this case, the modulus of rigidity is taken as the characteristic modulus S. 
It then follows that k\ = 2cr/(l - 2a), k2 = 2, and E = 2(1 + a). 
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Dynamic Stress Intensity Factors 
for an Inclined Subsurface Crack 
Stress intensity factors are computed for an inclined subsurface crack in a half 
space, whose surface is subjected to uniform time-harmonic excitation. The 
problem is analyzed by determining displacement potentials that satisfy reduced 
wave equations and specified boundary conditions. The formulation of the problem 
leads to a system of coupled integral equations for the dislocation densities. The 
numerical solution of the integral equations leads directly to the stress intensity 
factors. Curves are presented for the ratios of the elastodynamic and the 
corresponding elastostatic Mode-I and Mode-II stress intensity factors for various 
frequencies and various inclinations of the crack with the free surface. For small 
angles of inclination with the free surface and large crack length-to-depth ratios, 
strong resonance vibrations of the layer between the crack and the free surface may 
arise. 

Introduction 
The effect of the proximity of a boundary on elastodynamic 

stress intensity factors has been investigated in references [1] 
and [2] for a subsurface crack parallel and normal, respec
tively, to the surface of a half space. In this paper we consider 
a subsurface crack which is oriented under an arbitrary angle 
with the surface of a half space. 

The configuration that is considered here, is two-
dimensional with deformations in plane strain. A system of 
coupled singular integral equations for the Mode-/ and Mode-
77 dislocation densities has been derived. These equations 
have been solved numerically for the cases of time-harmonic 
uniform tension and uniform shear applied at the surface of 
the half space. The elastodynamic stress intensity factors have 
been computed. The results display the dependence on the 
frequency, angle of inclination, and on the ratio d/a, where d 
is the distance from the upper crack tip to the free surface and 
a is the crack length. For small angles of inclination with the 
free surface, and for small values of d/a, time-harmonic 
excitations of the body may induce quite strong resonance 
vibrations of the layer between the crack and the free surface. 
Such resonance vibrations give rise to substantial increases in 
both the Mode-/ and Mode-// stress intensity factors. These 
resonance effects were investigated in some detail for the 
parallel crack in reference [1]. Similar effects have previously 
been noted in papers by Mai [3] for antiplane shear and 
Rokhlin [4] for a crack in a layer. 
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Formulation 

A homogeneous isotropic linearly elastic solid, which 
occupies the half plane y > 0, contains a subsurface crack. The 
two-dimensional geometry of the traction-free crack is shown 
in Fig. 1. The total fields that are generated by the interactions 
of the incident wave(s) and the crack can be expressed as 

u'^uf+Ui, <tj = 4 + ou, (1,2) 
where uf and a'," are the displacement and stress components 
for the incident field, while «,- and ay correspond to the 
scattered field. In the analysis given in this paper the time-
harmonic factor exp( - iut) will be suppressed. 

By virtue of linear superposition, the scattered field is 
equivalent to the field generated in the cracked half plane by 
the application of tractions on the crack faces that are equal in 
magnitude but opposite in sign to the corresponding tractions 
due to the incident wave in the uncracked half plane. Thus on 
the faces of the crack we have 

+ oiV = < + ai"'v' =0 •y- , ux-y- — x'=0, 0<y'<a (3) 

where the x 'y' coordinate system is shown in Fig. 1. Since the 
stresses of the incident field already satisfy the prescribed 
conditions on the surface of the half space, we have that 

oxy = oyy = 0 y = 0,-oo<*<oo (4) 

For a body of arbitrary geometry, which contains a line 
crack on 0<y' <a, x' =0, and that is subjected to two-
dimensional (in-plane) loading, a well-known elastodynamic 
representation theorem states (see e.g., Achenbach, et al. [5]) 
that the scattered displacement field can be expressed in terms 
of the crack-opening displacement, 

AM,O'') = " ; ( 0 + J ' ' ) - W / ( 0 - J ' ' ) , (5) 

as 

M * o ) = ] o ffg'-,([(0,j'';xo)AK,O'')rfy' (6) 

Here k is the subscript referring to the coordinates x' ,y' and 
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L wave Let . 

Fig. 1 Geometry of the problem 

summation is assumed to be carried out over repeated indices. 
In this case, summation is carried out over the index 
i(i=x',y'). The stress components afx'-k are for the field in 
the body with traction-free external boundary and for a time 
harmonic line load applied in the ^-direction at XQ . 

If we consider coordinates x$ and y[> and compare the 
following equation 

which is obtained in reference [6] with equation (6), then the 
following result can be immediately obtained: 

(7) 

•£>> = 
- 1 

lxk2
T 

(dy'ofx' -dx'afx') *o" 

Similarly, 

7 S ' ; x ' = - T J (dxoOhc' +dy'o°fx>) 

(8a) 

(86) 

Note that 9^ = d/dyd, dx^ = d/dxi, afj and afj are the com
ponents of the stress tensor derived from the fundamental 
potential pairs {<j>L, \[/L) and (cf>r, \pT), /*, is the shear modulus, 
and kT = o)/(n/p)v'. A proof of equation (8) is given in 
Appendix /. 

Since the expressions (<j>L, i/^) and (c6r, \pT) have already 
been found for the half space (reference [6]), the Green's 
function afx' -k can be obtained. After integrating equation (6) 
by parts, an integral representation of the displacement field 
in terms of the dislocation densities can be established as 

Here, 

di(y') = dAui(y')/dy' 
and the crack closure condition, 

j ; d,(y')dy'=0 

(9) 

(10) 

(11) 

has been applied. The stress components that correspond to 
equation (9) are obtained by application of Hooke's law, and 
lead to the set of integral equations given next: 

°x'x' = -^ j o (Andx> +And/)dy' (12) 

2.5 

a0 (7ra)1 /2 

kLd 

Fig. 2 Stress intensity factors at lower crack tip for d/a = 1.0, <* = 0 
deg, 30 deg, 60 deg, 90 deg and time-harmonic normal loading of 
magnitude o0 applied at y = 0 

L wave u.c.t. 
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O-Q' t™y/z 
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60 

1.5 2. 2 

kLd 
Fig. 3 Stress intensity factors at upper crack tip for d/a = 1.0, « = 0 
deg, 30 deg, 60 deg, 90 deg and time-harmonic normal loading of 
magnitude <r0 applied at y = 0. 

k\'o{Aud-k\ 
+A22dy')dy' (13) 

Equations (12) and (13) are seen to relate the stresses on the 
crack faces, which are given, with the dislocation densities 
that are to be determined. The kernels Ay (i,j= 1,2) are given 
in Appendix //. 

Numerical Scheme 

The coupled integral equations for the dislocation densities 
(12) and (13) are singular integral equations of the Cauchy 
type. The numerical scheme used here is the same as that given 
in reference [1]. It relies on the Gauss-Chebyshev quadrature 
formula [7]. Equations (12) and (13) are written as: 

ff*v0*)=^££(*< + dy'Ai .) (14) 
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T wave l.c.t. 

Fig. 4 Stress intensity factors at lower crack tip (or d/a = 1.0, a = 0 
deg, 30 deg, 60 deg, 90 deg and time-harmonic shear loading of 
magnitude T0 applied at y = 0 
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Fig. 5 Stress intensity factors at upper crack tip for d/a = 1.0, a = 0 
deg, 30 deg, 60 deg, 90 deg and time-harmonic shear loading of 
magnitude T0 applied at y = 0 

<V/Oo/)= •u~^Hl(dx'A2i + d/A22) 

here dx> (yf),dy> iy' i)AM W.^oy). (£,/= 1,2) are defined as 
(/-0.5)* 

Zi = cos , 0=1,2 tri) 
m 

yl=(zi + l)a/2 

y!,j=(cos— + 1 J - , (/'=1>2, . . . , m-l) 
\ m / 2 

dx'(y!) = d/(yl) 
dx'W) d/W) 

The crack closure condition is 

= (l-*?)v 

(15) 

(16) 

(17) 

(18) 

(19) 

Fig. 6 Stress intensity factors at lower crack tip for d/a = 0.2, a = 0 
deg, 30 deg, 60 deg, 90 deg and time-harmonic normal loading of 
magnitude aQ applied at y = 0 
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Fig. 7 Stress intensity factors at upper crack tip for d/a = 0.2, « = 0 
deg, 30 deg, 60 deg, 90 deg and time-harmonic normal loading of 
magnitude <r0 applied at y = 0 
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Fig. 8 Stress intensity factors at lower crack tip for d/a = 0.2, « = 0 
deg, 30 deg, 60 deg, 90 deg and time-harmonic shear loading of 
magnitude T0 applied to y = 0 
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Fig. 9 Stress intensity factors at upper crack tip for d/a = 0.2, a = 0 
deg, 30 deg, 60 deg, 90 deg and time-harmonic shear loading of 
magnitude T0 applied at y = 0 

D^'(y/)=I)rf/O/) = 0 (20) 
/= I (= i 

By combining equations (14), (15), and (20) we can solve for 
jxdx and fidy <. 

The stress intensity factors at the crack tips are defined as: 

K > • 

= lim [2w(y'-a)]'' 
K„J y '-

tx(k2
T-k2

L) /air fcf-*i)/g*\* f \dx' 
k\ V 2 ) I \'dyl 

\ox-x'(0,y')\ 

\ox>/(0,y')\ 

Id,'(1)1 

,•(1)1 
(21) 

K„ 
= lim [2ir\y' l]'/! 

/ to 

= n(k2
T-k2

L) / air\ 

k\ \ 2 ) 

K'x'(0j')\ 

lff»V(0/)l 

l«?/ ( - l ) l 

I d / ( - 1 ) 1 
(22) 

here the argument of dx' <?/ in equations (21) and (22) 
correspond to z= ± 1, and the value of d,1 (± 1) can be ob
tained from the extrapolation formula [8]. 

' • ' ( - , ) 

1 ^ sin[(2w-l)(2A:-l)7r/4m] - (y x dr' 
m sin[(2/t-l)ir/4/M] \.v m + i - * / 

Note that /cL = o;/((X + 2/^)/p)l/! and X,/n are Lame constants. 

Results 

The results considered for this paper are those in which the 
surface of the half space 0 = 0) is loaded harmonically by 
constant shear and normal stresses, i.e., oxy = T0 exp (-iwt) 
and Cyy= a0 exp (-ioit). The corresponding incident stress 
field is as follows: 

T < » [s2 \2k\/kV l)]o0exp(ikLy-iwt) 

r / R ' = -cs(2k2
L/k2

T)a0exp(ikLy-iict) 

and 

UX X 

"x y 

= -2cs T0exp(ikTy — iut) 

= (c2 -52)T0exp(;/c r3'- iut) 

For all calculations Poisson's ratio is taken as 0.3. Here 
c = cosa and 5 = sina. 

Four sets of figures are presented, two each of which give 
the stress intensity factors, Kt and K„, for the upper and 
lower crack tips. Figures 2 and 3 show the results for tensile 
loading at y = 0 for a crack having a ratio of d/a = 1.0. As can 
be seen from the figures, a crack having a smaller angle of 
inclination with the horizontal will have a larger response with 
the maximum response being that of the horizontal crack. 
Furthermore, it is noted that K„ is small relative to K,. 
Figures 4 and 5 give the results for the case of shear loading on 
y = 0, also with d/a = 1.0. As expected, Kt is small relative to 
K„ for near horizontal and vertical cracks, since the 
corresponding tensile tractions on the crack faces are 
relatively small. 
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kLa 
Fig. 10 Mode-/ stress intensity factor for horizontal crack, d/a = 0.2,1., 
oo (dashed line), and time-harmonic normal loading of magnitude <;0 at 
y = 0., K-| /aoM) 1 ' 2 = 2.05 for d/a = 0.2, /tLa - 0 (see Fig. 6 or 7). 

k-rCJ 
Fig. 11 Mode-// stress intensity factor for horizontal crack, 
cf/a = 0.2,1 .,oo (dashed line) and time-harmonic shear loading of 
magnitude T0 at y = 0 

Figures 6 and 7 depict the case of tensile loading for a crack 
with d/a = 0.2. A very distinct resonance effect can be seen 
when the crack is nearly horizontal. A detailed discussion 
concerning this phenomenon has been given in reference [1]. 
It is noted that only the first peak is relatively large. Figures 8 
and 9 depict the case of shear loading for d/a = 0.2, where it is 
noted that here the peak is much lower in magnitude than in 
the tensile loaded case. 

Figures 10 and 11 allow certain conclusions to be drawn 
concerning the effect of the boundary. It appears that for a 
value of d/a =1.0 the boundary has little effect for the case of 
shear loading. On the other hand the value of d/a should be 
higher for normal loading in order for the same to be true. If 
the frequency is sufficiently high, then the boundary effect 
may be small even for cracks near the surface. If the 
frequency is very low (static), more detailed information 
about the boundary effect can be found in [9]. 

The numerical solution of dislocation densities have been 
checked by calculation through power balance. The accuracy 
is defined by 1 - (power on crack face)/(scattered power). For 
m = 15 (equation (14)), the power balance is satisfied to within 
2 percent in the numerical calculation. 
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A P P E N D I X / 

Relation Between Green's Function and Fundamental 
Potential Pair 

In equation (8a) the result is stated without proof that 

- ^ 0 ^ 4 - 0 ^ 4 ) 

Here, we will now show the equivalent result that 

(I A) 

(1.2) 

It can easily be shown that the boundary condition 

omy'(x'b;%o)nj = 0 
is valid since we have that 

ofj (x^xi+dx^nj = 4 (x'b.x(,)nj=0 

where(3=Lor T. 
The governing equation for afj is given by 

where p is the mass density and 
/, = &»'8(x'-x&) (IA) 

We will show that (1.3) follows from (7.1) and (1.2). Now if 

x V x ' o , 
then 

jXKT 

(.1.5) 

Furthermore, if f= Ix' -x£ l = e-0, then only the singular 
term has to be considered, i.e., 
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<AL ~ -j m\kLf) 

- \ , 
i 

. -exp[i£(x' -Xo)-aL\y' -yi\]d% (1.6) 
l r 47raL 

The expression for i/'7" is identical to equation (7.6) with aL 

replaced by aT, see (77.30) (r is the same contour as in 
reference [1]). 

Next, the body force is expressed in terms of the 
displacement potentials as 

, i (x'-xMy'-y&), 

and we can, therefore, construct the displacement potential of 
the harmonic point force from the fundamental potential 
pairs. 

A P P E N D I X / / 

Tabulation of Coefficients of Kernel Ay 
The kernels of the coupled integral equations (12) and (13) 

are given by the following contour integral 

TTA 

[Ame 

"=L i w -aL{y'c+d) 
y l ( +AiJ2e 

-aj(y c+d) 

-aL{yQC+d) 
+AU4e ]e /R(t)}d% 

-[kim\kLf)-k\mHkTr)} 

(7.7) 

f/~¥Tllct ( v 2 +* i ) a 'oV^+(V 2+Arf)d^<^] 

= ~ V2iml)(lcLr) +HQHkTr)]- ~ [k2
LH%\kLr) 

+ k2
TH^(kTr)] + - V2{ [m\kLf) -m\kTF)\ 

[Oo -y')2-(x' -xtf]/r2) + ~[k2
Lm\kLr) 

i 

8T2 

+ J r
e \Awe +Aijae ]d£ 

+ j r e L4,y7e +-4,y8e M 

+ f j^dfrfj'' (̂ -1) 

i4,n = - ( 2 ? 2 -fc2
T)[2(aLc4-(^) + fc2

T/(az,c + (^)]/(2aL) (77.2) 

(77.3) 

(77.4) 

(77.5) 

(77.6) 

-kMl\kTf)][(yl -y')2-(x(, -x')2] (7.8) 

For the preceding calculation, the following formula (see, 
e.g. [6]) has been applied 

H^(kBr)eini = —. \ , exp( -Mr^cosh/ 

Here, 

+ fc„ l.ylsinltf-7tf)<# 

- ljH - -x 
cos0= ——, sin0 = ,£= -kacosht, 

r r 

(7.9) 

and V is the corresponding contour. 
For those terms that do not contain the Laplace operator 

(V 2 ) , the singularity is only logarithmic; therefore, the in
tegration over the area will be zero. For those terms that do 
contain the Laplace operator, we apply the formula 

\L*aFdA = iTr*-*\o Ttd°' (/-10) 

Thus, 

[ fx'dA =\im -A^r[HV\kLe) 
J At t^0 4 de 

{ IT 

cos0'sin0'J0'=O 

+ H[\kTe)] V* dd'+e^- [H$\kLe) 
Jo de 

-HP(kTe)]\J (sin20' - c o s 2 0 ' ) ^ ' ) = 

Am=2i£(aTs-i£c) 

AU3=(2e-k2
T)[k2

T+2(aLc-iZs)2] 

A,,4 = 4i£aL (arS + i&)(aTc-i£s) 

Am = -(2H2-k2
T)(aLs-i$c)/aL 

Am=-i$\ (a-rc + its)- — — — 
L (aTc + iZs) J 

Ai23=An3,Am=Alu 

Am = -if [2(«ic + i€s)+ f — 1 

A2n = -{2e-k2
T)(otTs-i$c)/aT 

A2n = -4i£aT(,aLs + i%c)(<xLc-i%s) 

A2l4=-(2e-k2
T)[(arc-i^)2-(aTs + i^c)2] 

A22i= - 2 i £ ( a L s - i £ c ) 

(aTs-i£c)2 

Am — = (2!f-k2
T)[ (a-rC + i^s)-

(aTc + i£s) 

A223=A2l3, A224=A2U 

[k2
T+ 2(aLsG + iHc)2KaLsG - i£c) 

AH5 = 

Aun = 

Ans = 

A M = 

2a.L 

(aTcG + i£s)(aTcG - i%s)(.aTsG + /£c) 

— aT 

(aLcG + i$s)[k2
T+ 2(ctLsG + it. c)2] 

- 2 a L 

(aTcG — i%s)(aTsG + i%c)(aTsG — /£c) 

= 1 

Aw = 

A216 = 

Ar>s — 

(aLcG- i£s)(aLsG + i£c)(aLsG - /£c) 

[(aTsG + i$cf - (aTcG - i&)2](aTcG + ifr) 

2ctT 

(aLcG + iks)(otL cG - i£s)(aLsG + i£c) 

(77.7) 

(77.8) 

(77.9) 

(77.10) 

(77.11) 

(77.12) 

(77.13) 

(2aT) (77.14) 

(77.15) 

(77.16) 

(77.17) 

(77.18) 

(77.19) 

(77.20) 

(77.21) 

(77.22) 

778/Vol. 51, DECEMBER 1984 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



[(aTsG + i^c)1 - {aTcG - i£s)2](aTsG - i%c) 

2a T 

10 , p 

( /A23> ^A^m— \ (A.al + A^^+A.e+A.e/^ 
;=i 7 r ( J r 

_ [k2
T+2(aLsG-i£c)2](.aLsG-itc) +A5+A^/ae+A1afi+A^+A9^

2/ap 
Am (77.24) 

, 2 t t i +^ 1 0 / a , ) e
, e x - " ' ' b " r f f (77.36) 

Am=(aTcG + i£s)2(aTsG-i%c)/aT (77.25) 
-4227 = (aLcG + /£y)2(aL.yG-/£c)/aL (77.26) BV t h e change of variable, £= - ^ cosh?, and by the use of 

equation (7.9), these forms can be integrated as 

[2(aTsG-iZc)2+k2
T](arsG-iZc) , _k3H3C3-3H1C1 

2<xT
 H 

— ik3 

(77.28) h = - ^ < / / 3 S 3 - / * , S , ) 

= k2j{k2
T+2(aLsG + i£c)2] ,-{[(/ +y^c+2d]-aL K / - J - 6 > I 73 = ^ (7/3C3+77,C,) 

( - 4 a L ) 4 

| / r K ^ + 2 ( « ^ G - ^ c ) 2 ] ^ ( / - ^ ) c - ^ l ( / - ^ i ( / / 2 9 ) 74 = ^ ( ^ 5 3 + 3 ^ , 5 , ) 
( - 4 a L ) 4 

J — L- f-f (^ 
k2

T[k2
T+2(uTsG + i%c)2] W' +yfa+2d\-aT\{y' -y^W 5 " ' ' _ 

^ 2 2 9 = ( Z 4 ^ 0 e h=-ikeHlSl 

_k\ 
k2\k\+2{aTsG-iic)2\ my'-yfa-aT\(y'-yfa\ , „ , m

 y ? ~ T [ - # O + ^ 2 ^ 2 ] 
+ ——— e (77.30) 2 

( - 4 a r ) 
£2 

_ fc^arcG-i^sKodT-sG + iJc) i « / +^)e+2di-c<ri(y' - ^ 78 = - ^ [-i'S2772] 
Al29 —— e 2 

(2a r) 
t / L 3 1 ) 7 9 = f [ 7 7 0 + 7 7 2 C 2 ] 

_ k2T(aLcG-i%s)(otLsG + iZc) IM'+yo)c+W-«LHy'-yaW z 

A™~ (32^1) ^ Ao=Ho 
(77.32) Here, H,=H\lKkfiy), 

and here 
y=\lx2+y2, G = sign[(y'-yfc] (77.33) ( ( 

ap = (? 2 - fc | ) ' / j , i ?e (a e )>0 , 7m(a,3)<0 (77.34) C„=cos/i0, cos0= — , 

R(S) =(2e-k2
T)2-4$2aLaT (77.35) 

7 

A: The integrals that contain Aifi,Aijfl, Aw, Am, and AiJ9 in S„ = sin«0 and sin© = 
equation (77.1) are combinations of the following: 7 
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Transient Stress Intensity Factors 
of an interfacial Crack Between 
Two Dissimilar Anisotropic 
Half-Spaces 
Part 2: Fully Anisotropic Materials 
Dynamic stress intensity factors for an interfacial crack between two dissimilar 
elastic, fully anisotropic media are studied. The mathematical problem is reduced to 
three coupled singular integral equations. Using Jacobi polynomials, solutions to 
the singular integral equations are obtained numerically. The orders of stress 
singularity and stress intensity factors of an interfacial crack in a (0U) /6{2)) 
composite solid agree well with the finite element solutions. 

1 Introduction 

In a previous paper [1], the dynamic stress intensity factors 
for a Griffith crack situated at the interface of two bonded 
dissimilar orthotropic half-spaces were investigated. The 
method of solution reported in [1] is extended to the study of 
the transient behavior of an interfacial crack between two 
dissimilar, fully anisotropic, elastic solids. A typical example 
of interfacial cracking in anisotropic solids is the 
delamination of fiber-reinforced composite laminates. The 
interfacial cracks in composites are introduced by fabrication 
defects such as incomplete wetting or trapped air bubbles 
between layers, or by debonding of two laminas as a result of 
high stress concentration at geometric or material discon
tinuities, e.g., the well-known free edge effects [2]. 

Due to the highly anisotropic material properties, there 
exists significant coupling between three fracture modes, i.e., 
the simultaneous existence of mode /, 77, and III fractures. 
Numerical solutions of transient stress intensity factors of 
interfacial cracks in composite materials have been presented 
in [3] by using hybrid-stress crack-tip elements. In this paper, 
the crack is excited by prescribed tractions suddenly applied 
on the crack surface. Governing differential equations, 
boundary conditions, and continuity conditions are trans
formed into a frequency domain by applying the Laplace 
transform. Solutions in the frequency domain are expressed 
as a series of Jacobi polynomials by solving three coupled 
singular integral equations. Inverse Laplace transform is 
carried out numerically with the use of Jacobi polynomials. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, September, 1983; final revision, March, 
1984. 

Numerical examples for an interfacial crack between a ± 9 
composite solid of graphite fiber-epoxy are shown. Results of 
the example problem are compared with finite element 
solutions. 

2 Formulation 

As shown in Fig. 1, consider a Cartesian coordinate (x, y, z) 
with origin at the middle of the interfacial crack between two 
bonded dissimilar, anisotropic solids. The z-axis is in the out-
of-paper direction. All lengths are normalized with respect to 
the half crack length so that the crack is described by the 
relations: \x\ <1, y = 0, i.e., L equals one unit length in Fig. 
1. 

Constitutive equations of the materials can be written in the 
contract notation as 

Fig. 1 Geometry of the problem 
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4a) =Cife}^ (kj = 1,2,3,4,5,6; « = 1,2) (1) 

where the repeated subscript indicates summation, CkJ is the 
stiffness tensor, and the superscripts 1 and 2 designate the 
upper and lower half-spaces, respectively. In the remainder of 
this paper, the Greek letter a (a = 1,2) will be used as the 
index of different half-spaces, and the superscript will be 
dropped unless it is necessary to distinguish the upper and 
lower half-spaces. The repeated superscript does not imply 
summation, but the repeated subscript does. For a general 
anisotropic solid, CJk is a fully populated matrix. 

In equation (1), the engineering strains, ej, are defined by 

el = €jf — Ul,x e2-£y — ul,y e3~ez-ul,z 

«4 = lyz = U3,y + »2,J «5 = 7xz ~ U3,x + «!,* (2) 

66 = Jxy z 
MO- + Ul,x 

where ult u2, and w3 are components of displacements in the 
*, y, and z-directions, respectively. The stresses, ak, are 
defined in an analogous manner in the Cartesian coordinate 
system. In this paper, it is assumed that all external loads are 
independent of the z-coordinate. Therefore, derivatives of all 
variables with respect to z vanish. 

The equations of motion for both half-spaces are 

[L][u] = 0 (3) 

where [u] = (ult u2, w3) r and [L] is a three-by-three sym
metric operational matrix defined by 

a 2 a2 a2 d2 

dx2 

d2 

dxdy+C66dy2 dt2 

•< 12 — Cl6 —j + (C12 + C66) 
dxdy+C26dy2 

d2 d2 d2 

L " - C , 5 ^ + (C14 + C 5 6 ) — + C 4 6 ^ 

(4) 

'22 = 
a2 a2 a 

~C66dx2+2C26dxdy+C22dy2 

92 „ „ , d2 „ 

a2 

_ p a ? 

a2 

L2i -Cse^ + (C46 + C25) — + C24 ^ j 

a2 a2 a2 

Z « - C 5 5 a ? + 2 C 5 4 — +c* 
a2 

- p -a^2 ^ dt2 

and p is the density of the anisotropic material. 
The initial conditions for the problem are 

Uj(x,y,0) = 0 
( / = U , 3 ) (5) 

uu(x,y,0) = 0 

The crack is excited by prescribed tractions suddenly applied 
at time t = 0 on the crack surfaces. Thus, boundary conditions 
on the crack surface can be written as 

Txy(x,0,t) = -fi(x) H(t) (6a) 

ay(x,0,t) = -f2(x) H(t) 1*1 <1 (6b) 

Tyz(x,0,t) = -f3(x) H(t) (6c) 

whereH(t) is a Heaviside step function. 
The upper and lower half-spaces are assumed to be per

fectly bonded on their interface except those points in the 
crack region. Thus, the displacements and tractions on the 
uncracked interface are continuous, i.e., 

ay
l)(x,Q,t)-af\x,Q,t)=0 al l* (lb) 

T$(x,0,t)-T$(x,0,t)=0 (7c) 

and 

u{P(xfl,t)-uf\x,0,t)=Q> (/= 1,2,3,) 1*1 > 1 (Id) 

The problem can be simplified by treating applied tractions 
that are symmetric about the y-axis, i . e . , / ) ( - * ) = - / ) ( * ) , 
fi(-x) = / 2 ( * ) , a n d / 3 ( - * ) = / 3 (* ) . 

Solutions for the asymmetric case can be obtained by 
following the same procedure described in this paper, and 
solutions of a general problem can always be decomposed into 
an asymmetric and a symmetric cases. This symmetric 
tractions on crack surfaces lead to the following relations: 

Uj(x,0,t) = (-iyuj(-x,0,t) (J = 1,2,3) (8) 

3 Singular Integral Equations 

The solution to the problem defined by equations (3), (5), 
and (6)-(8) is obtained by transforming the equations into a 
frequency domain by the Laplace transform. Let s be the 
Laplace transform parameter and a tilde over a variable, e.g., 
ilj, represents the corresponding transformed function in the 
frequency domain. 

In the 5-domain, the transformed equations of motion are 
satisfied by assuming 

,7(«> (x,y,s) = ( 2 T T ) - 1 / 2 j "^ A}<*> (H,s)exp(q}°-) ) d£ (9a) 

" i a ) (x,y,s) = ( 2 T T ) - 1 / 2 J "^ A}a> (£,s)w/a> ($,s)exptej«>) dl; 

(9b) 

«i«» (x,y,s) = ( 2TT) - | / 2 ( " A}<*1 (H,s)8}a> ( t e J e x p f a f ) dl 
J — 00 

(9c) 

wherej=l,2,or3;q}a)=i£x + (-l)c'p}a)y; Aj are unknown 
functions of £ and s to be determined by the boundary and 
continuity conditions; and pj is they'fh root with positive real 
part of the equation 

lA(/>,£)l=0 (10) 

where [A] is a three-by-three matrix defined by 

Au = C66p
2 -CnZ

2-ps*± 2iC}6 fr 

A,2 = C26p
2 - C16£2 ±i£p(Cf6 +C1 2) 

An=C46p
2-Cl5e±ifr(Ci4 + CS6)" + " for « = 1 (11) 

A22 = C 2 2 /7 2 -C 6 6£ 2 -Ps 2±2!C 2 6&? "-" for a = 2 

A23 = CMp2 - C56 e ± itp (C46 + C25) 

A33 = Q 4 p 2 - C55 e - ps2 ± 2iCM ip 

For most materials of engineering interest, it can be 
assumed that there is no double root in equation (10). 
However, for the case of double root, e.g., p2 = /?3, "exp 
(qj)" should be replaced by "y.exp (qj)" for j = 3 in 
equations (9a)-(9c). In equations (9b) and (9c), Uj and 5, are 
defined by 

V 
where 

r">(*,0,/)-Tg»(*,0,0 = 0 (la) 

®(Pj,Cm„,i],p) 
(no summation) 

MPj,Cmn,Z,p) 

-Q(Pj,Cmn,Z,p) 

HPj,Cmn,£,p) 

fi = A13A23-A12A33 

9 = A13A22 — A12A23 

(12«) 

(\2b) 

(13«) 

(13ft) 
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A = A 2 2 A 3 3 -A 2 3 A 2 3 (13c) 

Let 

u<j»(x,0,s)-u<l
2'>(x,0,s) 

= (2x) - , / 2 j " ( B G_,(^)e '«* j d f C/= 1,2,3) (14) 

In equation (14), Gu G2, and G3 can be shown to be even, 
odd, and even functions of £, respectively, by the symmetric 
loading conditions, equation (8). Substituting equation (14) 
into equations (7a)-(7c) and equations (9a)-(9c), we can 
rewrite Aja) in terms of Gj as 

^ « > ( ^ ) = f l ( / + 3 a _ 3 ) t G t ( ^ ) / € C/,*= 1,2,3) (15) 

where a,* is an element of the inverse matrix of a six-by-six 
nonsingular matrix [D]. Matrix [D] is defined by 

f' dv 
Mjkrk(x,s) + (m) ~lMJk rk{r,,s) — -

J - 1 7J—X 

+ \_iHJkrk{r,,s)dr,= -fj(x)/s (/,* = 1,2,3) (21) 

w h e r e r i t r 2 , and r3 are symmetric, asymmetric, and sym
metric extensinos of r[, r{, and r 3 , respectively, in [ - 1,1 ], 

l(/' + 3< . a - 3 = ( - l ) ° 

2(/ + 3a-3) = ( - l ) a + 1 co j a ) 0 = 1,2,3) (16) 

£>3(,- + 3 a - 3 ) = ( - D a + 1 5 j a ) 

A 4(/+3a-3) 

Z> 5(/+3a-3) 

D 6(/ + 3a-3) J 

= (-D° 

'cfe> a?) c^> ci?> c#> 

cif> ci?» c i f ci?» c&> 
Cif> a?) C|4

a) C|?> C|6
a> 

(-irp}a)+ifa}°')]r 

Substituting equations (9a)-(9c) into equations (6a)-(6c) 
and eliminating ^4y by equation (15), we obtain three coupled 
integral equations: 

\^Bjk(S,s)Gk(Z,s)ifdt=-fjW/s>M^ 

(/,*= 1,2,3) (17) 

where 

£,*(£,*) =ZVr,* (18«) 

B2k(Z,s)=D5ja]k (/',*= 1,2,3) (186) 

B j t ( ^ ) = A y % (18c) 

By Betti's reciprocal theorem, it can be shown that 

BkJ($,s)=Bjk{-i,s) 

Assume 

G1^,S) = (2/TT)U2\ r{(x,s) cos&dx 

G2(£,s) = (2/TT)1 /2 f iri(pc,s) sin£x dx 
J 0 

G3(?,5) = (2 /7r ) 1 / 2 ( /-3 '(A:,5) cos£c rfx 

(19) 

(20a) 

(206) 

(20c) 

[M'] = 

0 />«i 0 

— irrii 0 / /M3 

0 -im3 0 

(22) 

[M"] = 

«i 0 m2 

0 «2 0 

/n2 0 n3 

(23) 

and [H] is a three-by-three matrix. Definitions of nx, n2, « 3 , 
ml,m2,m3, and elements of [//] are given in Appendix 1. 

Equat ion (21) is a s tandard form of a singular integral 
equation which can be solved numerically by the method 
suggested by Erdogan [4]. By the relation 

(/,*= 1,2,3) ~-Rjk<t>k 

where 

" T(n3,m2) -T(n3,m2) 1 

{R]= 1 1 0 

-n/Wz,/? ,) T(m2,m3) m 1 /w 3 ) 

r (z 1 ,z 2 ) = /(/niZi +m 3z 2) / ( \ (H 1n 3 - w 2 ) ) 

/m1(/Min3+ffl2m3) + /w3(miffl2 + «iffl3)\ 1/2 

\ n2(nxn3-m2m2) / 

equation (21) can be transformed into a simpler form as 

(24) 

(25a) 

(256) 

(25c) 

-\<t>2(x,s) 

0 

[M(V 

+ (?"•) " ' J ' 

0i(»),s) 

.<M>7>S) . 

d-q 

r,-X + 

* s i ! - , rfij= — [ F ] (26) 

where 

(27a) 

(276) 

In equations (20a)-(20c), cos£x is used for Gt and G3 and 
sin£xr is used for G2 since Gu G 2 , and G 3 , are, respectively, 
even, odd, and even functions of £. 

Eliminating Gk from equations (20a)-(20c) and equation 
(17), we obtain three coupled singular integral equat ions: 

[F\=-[Rri[M"]~l[flif2J3]
T 

[M] = [R]-l[M"]-l[H\[R] 

X, - X, and 0 in equation (26) are eigenvalues of the matrix 
[M"] \ ' [M'] and [R] is a three-by-three matrix containing 
their corresponding eigenvectors. Thus , in equation (26) 

<f>2(x,s) = -Mx,s), F2{x,s) =Fl(x,s) (28) 

The first two equations of equation (26) are conjugates of 
each other, i .e., there are only two independent equations. 
The continuity of displacements, equation (Id), lead to three 
additional equations to be satisfied: 

<t>j(x,s)dx = 0 (/ = l ,2,3) (29) 
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4 Polynomial Solutions 

Solutions to equations (26) and (29) can be expressed as a 
series of Jacobi polynomials as [4, 6, 7] 

*,(x,s) = C„ (s) Wx (x)P™ (x) (30a) 
in = 0,1,2, . . . ,oo) 

* 3 ( X ^ ) = D # 1 ( J ) F F 3 ( X ) P < - , / 2 ' - 1 / 2 ) ( * ) (306) 

where 

Wi(x) = (l-x)"(l+x)d (31a) 

Wi(x) = (\-x2)-yl (316) 

C„ and £>„ are unknown complex constants to be determined, 
and 

a= - I / 2 - 7 (32a) 

7 = (7r) - 1 L«(( l -X)/ ( l + X)) (326) 

Wj (x) and W3 (x) are weight functions of the Jacobi 
polynomialsp{

n
a,a) (x) and P^~U2'~U2\x), respectively, and X 

is defined by equation (25c). 
Similar to the isotropic [5] or orthotropic [1] cases, the 

order of stress singularity at the interfacial crack tip has a real 
part of - 1 / 2 and an imaginary part of y. The imaginary part 
is a function of the relative material constants of the two 
solids. This imaginary stress singularity causes a physically 
unrealistic overlapping of crack surfaces near the crack tip [1, 
8, 9]. However, this inadmissible phenomenon may be 
neglected as long as the overlapping zone is very small, e.g., 
10 "4 of the crack length. 

By the relations, 

(j>i(-x,s) = -<l>l(x,s) fc(-x,s)=<t>3(x,s) (33) 

Wd-x)=W^j W3(-x) = W3(x) 

it can be shown that, in equations (30a) and (306), 

Cim = CZm + l = A ; = 0 (/K = 0 ,1 ,2 oo) (34a) 

where 

Cn=C'n+iCZ (346) 

Dn=D'n+iDZ (34c) 

Substituting equations (30a) and (306) into equations (26) 
and (29) and applying the orthogonal properties of the Jacobi 
polynomials [1], we obtain a system of infinite linear algebra 
equations of C„ and D„. If only the first (iV+ 1) terms are 
included in equations (29a) and (296), i.e., 

4>i(x,s)=Cn (s) Wdx)p^d) (x) (« = 0,1,2, . . . ,N) (35a) 

4>3(x,s) =Dn(s) W3(x)ptW2^W2Hx) (356) 

we obtain the followng system of equations: 

a„ C„ +1 + bnj Cj + dnJ Cj + enJDj = g„ (3 6a) 

lnD„ + , + hnj Cj + snJ Cj + tnjDj = vn 

(nJ = Q,l,2 N-\) (366) 

N„Cn=0 (36c) 

Q„Dn=0 (36d) 

wherea„,bn j ,en j ,gn , l„, hnj, snj, tnj, vn, N„, and Q„ are 
defined in Appendix 2. The (2N+2) unknowns of C„ and D„ 
can be calculated by the (2N+ 2) equations of (36a)-(36rf). 

5 Stress Intensity Factors 

Both oscillatory stress singularity, -1/2 + iy, and con
ventional square root stress intensity exist for the present 
problem. The stress intensity factors are defined by 

Txy (X,0,t) ' 

"y (X,0,t) 

TyZ (X,0,t) 

1 ( 
[7T(X2-l)]l/2i 

KioU) 

Kw(t) 

^ l 7 ( 0 c o s ( 7 L « ( x - l ) + ^ ( 0 ) 

K2yU)cos(yLn(x-l) + Mt)) 

L KiyU)cos(yLn(x-l) + 03(t)) 

+ (H.O.T.) (37) 

where Ix I > 1 and H.O. T. stands for higher-order terms. 
It can be shown that, for \x\ > 1, 

[G] 

Txy (X,Q,S) 

Oy (X,0,S) 

TyZ (X,0,S) 

= - \ 
1 f1 

7T/ J - 1 

(j>dn,o,s) 

<l>2(ri,0,s) 

<t>3(y,0,s) 

d-q 

7}-X + 

J^[M(^,5)] 

4>dvfi,s) 

^2(17.0,5) 

fa(y,0,s) 

drj (38) 

(39) 

where [G] is a three-by-three matrix defined by 

[G] = [ i ? ] - ' [ M " ] ^ 

In equation (38), the second integration on the right-hand 
side is a higher-order term and the first integration can be 
evaulated by substituting the solutions, equations (35a), 
(356), into it and using the relations: 

( « ) - ' ( />««•«> (v)WAv) — 
J -1 i\—x 

- 2 
l + e " 2 ^ 

l-W1(x)p^(x)+A„(x)] (40a) 

( « r ' j '_/><- 1/2, -1/2) (i/) w3(n) 
drj 

r\ — x 

= -2[-W3(x)pj,-l/2'-i/2Hx)+Bn(x)] (406) 

where A„ (x) and B„ (x) are, respectively, the principal parts 
of WiMp},"^ (x) and Wi(.x)p},~,/2'~'/2) (x) at infinity. 
Thus, as x > 1 and x approaches to 1, 

[G] 

' TXy (X,0,S) 

o> (x,0,s) 

TyZ (X,0,S) 

i(x- \)a (x+ \yC„ (s)pia-d) (l)/cosh(ir7) 

Hx-iy^x-iyCA^p^W/coMny) 
i(x-l)-U2(x+l)~U2D„{s)p{„~W2--W2)m 

(41) 

where «is ranging 0 to N. In equation (41), higher-order terms 
have been neglected. From equation (41), the stress intensity 
factors, KJQ (s) and KJy (s), as well as the phase angles (§,- (s) 
(j = 1,2,3) can be determined. 

In numerical calculation, the integrations of a„, gnJ, . . . , 
and Q„ of equations (36a)-(36rf) are performed by the use of 
Gaussian-Laguree quadrature, Gauss-Hermite quadrature, or 
Gaussian quadrature [10]. Having solutions in the frequence 
domain, we can do the inverse Laplace transform with the 
method suggested by Miller and Guy [11]. 
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Table 1 Values of y 

0(1)/„(2) 75 deg 60 deg 45 deg 30 deg 15 deg 

75 deg 
60 deg 
45 deg 
30 deg 
15 deg 

-15 deg 
- 30 deg 
- 45 deg 
- 60 deg 
-75 deg 

0.0 
0.01346 
0.02886 
0.04104 
0.04750 
0.04768 
0.04402 
0.03569 
0.02506 
0.01580 

0.01346 
0.0 
0.01661 
0.03096 
0.03800 
0.03984 
0.03932 
0.03513 
0.02942 
0.02506 

0.02886 
0.01661 
0.0 
0.01597 
0.02480 
0.02859 
0.03420 
0.03434 
0.03513 
0.03569 

0.04104 
0.03096 
0.01598 
0.0 
0.01051 
0.01617 
0.02401 
0.03240 
0.03932 
0.04402 

0.04705 
0.03800 
0.02480 
0.01051 
0.0 
0.00643 
0.01617 
0.02859 
0.03984 
0.04768 

2.0 

Fig. 2 Coordinates for a unidirectional fiber-reinforced composite 
material 

200 

t (u second) 
Fig.3 Transient stress intensity factor K l7(t) {f-\ (x) = f3(x) = 0, r2(x) 

= "oH*)) 

6 Numerical Results and Discussions 

As shown in Fig. 1, consider a composite solid made of two 
dissimilar unidirectional fiber-reinforced materials. The fiber 
directions of the upper and lower media are 0(1) and 0(2), 
respectively, where 6 is defined in Fig. 2. The following 
material properties of graphite fiber-epoxy composites are 
used: 

P 

£> 
Ei 

V\2 

= 7.44g/cm3 

= 137800 MPA 
= £ 3 = 14469 MPa 
= G12 = G2 3= 5856.5 MPa 
= P13 = J»23 = 0 . 2 1 

(42) 

50 100 150 200 

t (M second) 
Fig. 4 Transient stress intensity factors K3y(t) {1-, (x) = /3(x) = 0, f 2(x) 
= »o«(x)) 

t (M second) 
Fig. 5 Transient phase angle P-\ (() (f 1 (x) = 13(x) •• 

200 

0,f2(x) = a0Ht)) 

For different combinations of 0(1) and 0(2), the imaginary 
part of the oscillatory stress singularity, y, have been 
calculated and tabulated in Table 1. It is found that the y 
values are the same as those calculated by the Weiner-Hopf 
technique [3]. 

For the case of 0(2) = - 6m, mode 77 fracture is found to be 
decoupled from the other two modes. As a numerical 
example, 0(1) and 0(2) are chosen to be 45 and - 4 5 deg, 
respectively. The corresponding y value is 0.03434. Two sets 
of loads have been applied on the crack surfaces: 
/ i (*)=/ ) (*) =0 , / 2 ( * ) = f f 0 « ( * ) . and / , ( * ) = / , ( * ) =0 , 
fz {x) = ff0 where 5 is a delta function and a0 is a positive 
number. 

Six, five, and nine points were used in Gauss-Lagueree, 
Gauss-Hermite, and Gaussian quadratures, respectively. 
Eight terms in equations (35a) and (356), i.e., 7V=7, were 
included in the solutions, and 10 Jacobi polynomials of 
Pf'0) (t) were used in the inverse Laplace transform [11]. 
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2.0 

50 100 150 200 

t (u second) 
Fig. 6 Transient stress intensity factors KyY(t) Ci (x) = /3(x) = 0, f2{x) 
= on) 

50 100 150 200 

t (M second) 
Fig. 7 Transient phase angle/3-| (T)(f-i (x) = f3(x) = 0, ^(x) = <ro) 

For the case of concentrate force, f2(x) = a0S(x), kJ0, 
(/' = 1,2,3) and K2y are all equal to zero and the transient stress 
intensity factors, K2y(t), K}y(f), and the phase angle /3,(0 
are shown in Figs. 3-5, respectively. /33(0 was found to be 
[-ir/2-Pi(t)]. Solutions obtained by the finite element 
methods [3] have also been plotted in Figs. 3-5 for com
parison. Present solutions are found in very good agreement 
with the finite element solutions. Static solutions for this case 
are: 

K " i ^ j =0.6879(0.6876) 

K3y(™) = 0.7899(0.7893) 

Pi (oo) = 1.9978 deg (4.5770 deg) 

(43) 

where numbers in the parentheses are static solutions of the 
finite element analyses. It is observed that the transient 
solutions converge to the static solutions very fast. 

For the case of uniform tension, f2 (x) = a0, results have 
been depicted in Figs. 6 and 7. The static solutions similar to 
those defined in equation (43) are 1.0133, 1.1633, and 1.0529 
deg, respectively. The static solutions have also been given in 
[3] as 0.9937, 1.1408, and 3.9700 deg, respectively. As 
discussed in [1], solutions during the first 10 pisec cannot be 
properly calculated by the numerical inverse Laplace tran
sform due to the jump properties of the Heaviside function at 

d.M 

1.5-

1 0 

0.5 

0.0 

Present 

Sin 

x # ^ r ^ ^ ^ 
// "̂"""~""--~__ 

i7 
i 

11 
11 

6 
C , t / L 

Fig. 8 Transient stress intensity factor 

1.4 

*N 

< 

30 60 

8 (degree) 

90 

Fig. 9 Maximum overshoot of stress intensity factor 

t = 0. However, the current solutions are able to give accurate 
results in the range of most interest. 

As a special case, the dynamic stress intensity factor of a 
finite crack in a homogeneous, isotropic solid is also 
calculated. The crack is subjected to a suddenly applied 
tension at the infinity, and its normalized mode / stress in
tensity factor is compared with the solution obtained by Sih 
and Embley [12] in Fig. 8. The good agreement between the 
present solution and Sih's solution further ensures the 
adequacy of the solution algorithm discussed in this paper. 
For an interfacial crack in ± 6 composites, a parametric study 
is conducted by changing the value of d to see the effects of 
material anisotropy. The crack is subjected to uniform 
tension (f2(x) = a0). The maximum overshoot of the stress 
intensity factors for different d values are plotted in Fig. 9. It 
is found that the maximum overshoot of the stress intensity 
factor for an interfacial crack in ± 6 composites reaches its 
minimum at 6 = 45 deg. The maximum stress intensity factor 
of an interfacial crack in ± 8 composites is smaller than that 
of a crack in a homogeneous lamina of 6 = 0 deg or 6 = 90 
deg. Thus, in a ± 6 composite laminate, fatigue crack growth 
is more likely to occur within a composite lamina than at the 
interfaces. The foregoing statement is not necessarily true for 
the composite laminate of another type. 
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A P P E N D I X 1 

«,=Lim [Bjj(£,s)/\£\] (/'= 1.2,3,; no summation) 
{ -00 

m, = - /L im [Bl2(£,s)/£] 

m2=Lim [513(£,s)/l£l] 

m3 = - /Lim [B23(£,s)/£] 
f -00 

m=(//x)j; [H{\[B'][H2\dH 

where [H,], [H2], and [B'] are three-by-three matrices 
defined by 

( J f Y 1 ) 1 1 = ( / / , ) 3 3 = ( / / 2 ) 2 2 = s i n ^ 

(// ,)2 2=(//2)1 1=(//2)3 3=cos^ 

(Hx)Jk={H2)jk=Q, j * k 

B'n=[Bn{i,s)-n,\i\]/i 

B[2 = iBntt,s)/t + ml 

fl1'3=(B13«^)-ffl2l{l)/{ 

Bi3=iB23(^,s)/^ + m3 

A P P E N D I X 2 

«„ = - 7 r / ( l - X 2 ) 
1/2 ln-H/2 + ; T l 2 . I I / 2 + 17I 

(x)p}a-s) (T))dr,dx 

{X)p}"^ (r,)dr,dx 

(x)p}~W2'-W2\ri)dndx 

1 _ ( -« , -« ) 

[(n + l)!]cosh(7T7) 

&n=S~X\ iP^"'-'i)(x)[rVl(x)]~,Fl(x)dX 

, ( « + l / 2 ) ( « - l / 2 ) 2 . . . ( 1 / 2 ) 2 

hnj=\_l j ^ l O ? , ^ ) ^ ) ^ (*)]"' 

pj-"'-e) (n)p{„l/2A/2)Qc)dr,dx 

* « / = - { _ , \_lH32(.ri,Xf)W^i)lW3(x)]-1 

p^/2'y2\x)pY^wW)dr,dx 

P«/2'w2)(x)p(-l/2'-l/2Hr,)dr,dx 

7V„ = j Wl(x)p^a\x)dx 

Qn = \[l W3(X)pj,-i/2'-i/2Hx)dx 

u„=s'l\l_iP^2-U2Kx)[W3(x)]-1F3(x)dx 

where F, and F3 are components of [F\ defined in equation 
(27a). 

The integrals of bnJ, dnJ, enj, hnJ, snj,t„j,Nn, and Qn can be 
rewritten in more convenient forms with a variable trans
formation, 

x=tanh</>, ?? = tanh0 
so that the lower and upper integration limits of these 
numbers become oo and - oo, respectively. For example, 

bnJ=\°° \°° Hn(tanh4>,tanhd,s)e--2i^-e)pi-a'-d)(tanh<l}) 

p}"-d) (tanhd) sechV sechd dcj>dd 
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The Generation of Waves in a 
Semi-Infinite Plate by a Smooth 
Oscillating Piston 
A semi-infinite plate is set into plane strain, time-harmonic vibration by a rigid 
oscillating piston, which is in smooth contact with the edge of the plate. The exact 
(linearized) solution to this problem is obtained as a series expansion involving the 
Rayleigh-Lamb modes of the plate, the coefficients being determined by a bior-
thogonality relation. We compute the amplitude of the resultant force exerted by 
the piston, the mean total rate of working of the piston, and the proportion of 
outgoing energy in each of the available propagating modes; resonances are ob
served at certain of the cut-off frequencies. 

1 Introduction 

In a recent paper (Gregory and Gladwell [1]) the authors 
investigated the reflection of a Rayleigh-Lamb wave at the 
free (or fixed) end of a semi-infinite plate. It was found that in 
general all the propagating Rayleigh-Lamb modes contributed 
to the relected far field, but that near the end of the plate the 
evanescent modes were also significant. 

In the present paper we consider the generation of steady 
state, time-harmonic waves in the semi-infinite plate x > 0, 
\y\ < h, Izl < oo by a smooth rigid piston which is in per
manent contact with the end x = 0. The piston is made to 
execute small, time-harmonic oscillations perpendicular to its 
plane, and this sets up a time-harmonic response in the rest of 
the plate. In Section 2 we determine the displacement field of 
this response by expanding it as a series of the (symmetrical) 
Rayleigh-Lamb modes of the plate; in Section 3 we show how 
the coefficients in ths expansion may be determined by the use 
of a suitable biorthogonality relation obtained by Fraser [2], 
and more generally by Gregory [3]. 

At each frequency co, we find that in general the undamped 
outgoing waves are a superposition of all the propagating 
modes that are available at that frequency. We compute the 
total rate of energy transmission down the plate, per unit 
length in the z-direction (Fig. 3); and also the proportion of 
this energy that is carried by each propagating mode (Figs. 4, 
5). We also compute the amplitude of the resultant force 
exerted on the plate by the piston, per unit length in the z-
direction (Fig. 2). All these results are presented in Section 4. 

An interesting feature of the results is the appearance of 
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resonances when the dimensionless compressional wave 
number1 kh takes one of the "cut-off" values 

kh=(m+Vi)%, m>0. (1.1) 
This does not however occur at the other cut-offs 

Kh = mv m>\. (1.2) 
For kh < 2, Fig. 4 shows that the proportions of outgoing 

energy in the available modes vary rapidly, but as kh increases 
further it is obvious that by far the greatest proportion of 
energy is carried by the mode whose dimensionless 
propagation number a is closest to the dimensionless com
pressional wave number kh. This is shown in Fig. 6. 

The time-harmonic problem solved here is related to the 
"impact" problem solved by Miklowitz [4, (section 7.3)]; 
indeed this impact problem could be solved by performing a 
Fourier integral (over co) of our solution. However although 
our series expansion method is undoubtedly better in the time-
harmonic problem considered here, the Fourier/Laplace 
transform method used in [4] is better for obtaining asymp-
totics of the solution of the impact problem. 

The series expansion method employed in this paper is 
capable of much wider application, in particular to the 
corresponding problem of antisymmetrical vibration of the 
plate, and to the generation of waves in semi-infinite rods. 

2 The Problem 

Figure 1 depicts the problem to be solved. A semi-infinite 
plate, which has thickness 2h, consists of homogeneous, 
isotropic, linearly elastic material and occupies the region x > 
0, l.yl < h, Izl < oo as shown. The facesy = ± h,x > 0, Izl 
< oo are free of tractions, and the end x = 0, \y\ < h, Izl < 
oo is in permanent contact with a perfectly smooth plane rigid 
piston. The piston is made to oscillate perpendicular to its 
own plane with small amplitude u0 and angular frequency co. 

k, K are the wave numbers of compressional and shear waves, respectively, 
at angular frequency u. 
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Fig. 1 The plate and the piston 

The problem is to determine the resulting steady state 
response of the plate to this exitation, and in particular to 
determine 

(0 the resultant force that must be applied to the piston to 
maintain the steady state motion, 

(ii) the total flux of energy down the plate, and 
(Hi) the proportion of this energy carried by each of the 

propagating modes. 

3 The Solution as a Series of Rayleigh-Lamb Modes 

We will express u (x, y), the resulting time-harmonic, steady 
state displacement field in the plate2, in the form3 

«(^)=»oEc«u(")(->;)e/a"x/*' 

axy(0,y)=0, (3.6) 
\y\ < 1. If we write the "-stress vector" of the «th Rayleigh-
Lamb mode as 

,<«)-

T(n) 
= nSw(y)eia"x/h, (3.7) 

where S(n) (y) is given in the Appendix and JX, is the shear 
modulus, then the coefficients C„ must be chosen to satisfy 

E W W = 1 , \y\x\, (3.8) 

(3-D and 

where 
u<n>=fcU(")0)e'a« x/h (3.2) 

is the displacement field of the «th (symmetrical) Rayleigh-
Lamb mode of the plate; the functions U(n) (y) and the 
equation satisfied by the a„ are given in the Appendix. If a„ 
is real then the mode (3.2) is undamped as x — + °o and may 
propagate energy down the plate; modes corresponding to 
complex a„ (Im(an) > 0) propagate no energy, but these 
"evanescent" modes do contribute to the force exerted by the 
plate on the piston. 

For any choice of the coefficients C„, the expansion (3.1) 
defines a u(x, y) which satisfies the equation of time-
harmonic elastic vibration, namely 

Ar2V2u+(/^-A:2)grad(divu)+A:2^2u = 0. (3.3) 
Also the expansion (3.1) satisfies the free surface conditions 

oxy(x,±h) =ayy(x,±h) =0, (3.4) 
since the individual modes (3.2) do so. Hence it only remains 
to satisfy the conditions at the piston x = 0, that is 

ux(0,y)=u0, (3.5) 

£c„S];> O>)=0 \y\£l. (3.9) 

The C„ which satisfy (3.8) and (3.9) may be determined by 
employing the ' 'biorthogonality relation4'' 

[" {Sxy
)U^-Ux

m)S^)dy = 0, (m*n) (3.10) 

which yields (compare with [2], Section 2) 

c =- — [ s{n) — (3 in 

where 
dy r* d\ 

J„=2\_h{S^UM-U^S^)j 
(3.12) 

On inserting the value of Sj"1 given in the Appendix, (3.11) 
becomes 

C„ = -
A&h^lPh2 -2k2h2)shln (3.13) 

(2a2-#2/*2)7„/„ ' 
The resultant force F in the x-direction exerted by the piston 

upon the plate (per unit length in the z-direction) is given by 

Clearly this displacement field is one of plane strain; also the time factor 
e _ , w is understood throughout. 

We do not prove here that the expansion (3.1) is possible. However there is 
little doubt that such a proof could be constructed along the lines given in 
Gregory [5], who proves a corresponding completeness theorem in the 
elastostatic case. 

Papkovich [6] seems to have been the first to employ such a biorthogonality 
relation (in an elastostatic plate bending problem). The relation (3.10), as used 
in the present context, was obtained by Fraser [2], and a very simple derivation 
of all such relations for anisotropic rods of general cross section has been given 
by Gregory [3]. 
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dy 

F=-\_h°x*W,y)dy 

™ p h rl-, 

which on using (3.11) becomes 
Oo 

F=VilM0YdJnC
1
n. (3.14) 

The mean total rate of working P of the piston (per unit 
length in the z-direction) is given by 

• Vi Re ̂ haxA0,y)l- iwux(Q,y)]*dy 

= -ViuuQIm(F). (3.15) 
In fact only the propagating modes (i.e., those whose a„ are 

real) contribute to Im (F). The proportion En of the outgoing 
energy carried by the nth propagating mode is thus given by 

E„ = 
/m(/„)IC„l: 

Yt Im(J,„)\Cm\: 

(3.16) 

4 Results 

The roots a„ of the (symmetrical) Rayleigh-Lamb equation 
(A3) were computed numerically for Poisson's ratio v = V' 
(K2 = 3k2) and for kh in the range 0 < kh < 9.6. The 
program to do this, which involves tracking the movement of 
each root as kh increases from zero, is fully explained in 
Gregory and Gladwell [1], Appendix 1; the nondimensional 
displacement and stress vector at x = 0, U(n) (y), S(n) (y) are 
then given by (A2) and (̂ 48). The quantity Jn was calculated 
by evaluating the integral (3.12) explicitly, and this was 
checked by a direct numerical computation using a complex 
arithmetic version of a NAG library quadrature routine. The 
coefficients C„ are then given by (3.13); these values were 
checked by substituting them into the prescribed boundary 
conditions (3.8) and (3.9), and observing that satisfactory 
convergence to the prescribed data was obtained as the 
number of terms used was increased. The amplitude IF I of 
the resultant force exerted by the piston, the mean total rate of 
working P of the piston, and the proportion E„ of outgoing 
energy carried by each propagating mode were then calculated 
from (3.14), (3.15), and (3.16). 

Figure 2 shows IFl /n«0 for v = !4 and kh in the range 0 < 
kh < 4.75. The vertical dashed lines are the (dimensionless) 
cut-off wave numbers at which new propagating modes 
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> kh 

Fig. 4 The proportions of outgoing energy in the available 
propagating modes for 1.48 < kh < 1.6 and v = V* 

Fig. 5 The proportions of outgoing energy in the available 
propagating modes for 1.6 <kh < 4.75 and v = V4 

appear (or exceptionally disappear). It will be noticed that as 
kh approaches the cut-offs 1.48, 1.57, and 4.71 from either 
side then \F\ -~ oo, but this does not occur at the cut-offs 1.81 
and 2.63. This may be explained by observing that (i) kh = 
1.48 corresponds to the entry of a backward wave as the 
complex roots a2, a3 become real simultaneously; (ii) kh = 
1.57, 4.71 belong to the sequence of "compressional" origin 
cut-offs kh = (m + Vi)ir; (Hi) kh = 1.81, 3.63 belong to the 
sequence of "shear" origin cut-offs Kh = mir. At the cut-offs 
(7) and (ii) the propagating mode that is just appearing5 (or 
disappearing) is in fact a standing mode of the semi-infinite 
plate satisfying the homogeneous boundary conditions ux(0, 
y) = <v(0> y) = 0; at the cut-offs (Hi) this is not so. Thus 
resonances occur in cases (0 and (ii) but not in case (Hi). 

In case (i) the standing mode is the sum of the second and third modes. 

The same resonances are also evident in Fig. 3 which shows 
the mean total rate of working P of the piston, per unit length 
in the z-direction (C (= w/k) is the speed of compressional 
waves). It will be noticed that resonances occur at just the 
same cut-off frequencies as in Fig. 2, but P — oo only when kh 
approaches these cut-offs from otic side. The reason is that 
only propagating modes (i.e., modes with a real value of a) 
can transport energy, and the modes in question correspond 
to real values of a only on one side of the cut-off. 

The proportion of energy in each of the available 
propagating modes is shown in Figs. 4 and 5. Below kh = 
1.48, only one propagating mode, c^, is available and so this 
mode carries all the outgoing energy. For kh > IAS, more 
than one propagating mode is available, and the outgoing 
energy is divided among these modes as shown; clearly these 
proportions vary rapidly with increasing kh. Figure 5 should 
be compared with the results of Torvik and McClatchey [7], 
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Fig, 6 <i (the a-value of the Rayleigh-Lamb mode carrying the most 
energy) against kh 

Fig. 3, who investigated a similar problem for which the edge-
conditions were 

Oxx(0,y,z,t)=poe- (4.1) 

axy(0,y,z,t) = 0. (4.2) 
Torvik's result is qualitatively (at least) very close to our own, 
which suggests that in other engineering applications it may be 
permissible to replace stress conditions such as (4.1) and (4.2) 
(for which there is no closed-form solution) by mixed con
ditions like (3.5) and (3.6), which can be solved in close form 
by the method of Section 3. For kh > 2 we observe that it is 
quite common for one mode alone to carry most of the 
outgoing energy (perhaps as much as 80 percent); this mode is 
the one with a-value closest to kh, the dimensionless com
pressional wave number. This effect is displayed in Fig. 6, 
where we show a (the a-value of the Rayleigh-Lamb mode 
carrying the most energy) plotted against the dimensionless 
compressional wave number kh. It is quite striking that, over 
the full range shown, a = kh. 
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A P P E N D I X 

The Symmetrical Rayleigh-Lamb Modes 
The Rayleigh-Lamb modes of the plate \y\ < h, which are 

symmetrical about the midplane y = 0, have displacement 
fields of the form 

u(,,) =h\JM (y)e'anx,he~''"', 

where 

U("> (y): 
ia„ ch (y„y/h) + 8„ B„ ch (8„y/ h) 

y„sh(y„y/h) -ia„B„sh(8ny/h) 

(,41) 

042) 

and a„ satisfies the symmetrical Rayleigh-Lamb equation 
(2a2-tPtffchysh 8-4a2y8shych 8 = 0. 043) 
In the foregoing 

y=(a2-k2h2)'A, 044) 

8=(a2-K2h2)v\ 045) 

B= (2a2 -K2h2)chy/2iab ch 8. 046) 
In the context of the semi-infinite plate x > 0, \y I < h, we 

are only interested in roots an of 043) which are either 
complex with Im(a„) > 0, or are real and give a mode 041) 
propagating energy to the right.6 The method of numbering, 
and the numerical computation of the a„ as kh increases from 
zero are discussed carefully in [1], appendix 1. 

We define the "stress vector" of the mode 042) to be 
T(«) 

Jxy 

IX$M (y)e'anx">e-i'", 047) 

048) 

where 
S<">0>) = 

' - ( 2 T 2 +K2h2)ch(yny/h) +2ia„8„Bnch(8„y/h)^ 

2iany„sh(y„y/h) + (2a\ -K2h2)Bnsh(8„y/h) 

(i being the shear modulus. 

The a-values of these modes are not always positive; see Miklowitz [4, 
Chapter 4] for references and Gregory and Gladwell [1 (Appendix 1)] for 
further discussion of this point. 
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Three-Dimensional Analysis of 
Axisymmetric Transient Waves in 
Hollow Elastic Cylinders 
The axially symmetric problem of a semi-infinite, hollow, linear-elastic circular 
cylinder with traction-free lateral surf aces initially at rest and subjected to transient 
end loadings is solved using three-dimensional theory. Two cases are treated: an 
axial pressure applied to a radially clamped end and a prescribed axial velocity 
applied to an end that is free from shear stress. A double integral transform 
technique is used, and asymptotic solutions valid at large distances from the end are 
given for two types of time variation of the end loadings: step function and finite 
rise time function. A necessary condition for the validity of the asymptotic result is 
given. 

Introduction 
To fully understand wave propagation in a hollow elastic 

cylinder, results from the three-dimensional analysis are 
needed as a reference for results from approximate theories. 
The general case of a cylinder with inner radius a and outer 
radius b has been given very little attention in the literature, as 
to both exact and approximate analysis. 

Three-dimensional wave propagation in elastic cylinders 
was first analysed by Pochhammer [1] and by Chree [2] (but 
not in Chree [3] which is often wrongly referred to). They 
studied the propagation of harmonic waves in an infinite, 
free, solid circular cylinder and obtained the frequency 
equation for longitudinal waves. 

The treatment was extended to hollow cylinders in Chree 
[4]. A more thorough analysis was given by Ghosh [5]. Gazis 
[6, 7] investigated harmonic motion in a hollow rod and 
computed dispersion curves. Similar curves were given by 
Greenspon [8]. Further results of this kind are found in the 
works of Tournois, Vernet, and Bienvenu [9] and of Kumar 
[10]. In the papers by Mirsky and Herrmann [11] and Mc-
Niven, Shah, and Sackman [12] the exact theory serves as a 
reference for the respective approximate theories for thick-
walled cylindrical shells proposed by the authors. 

A solution to a transient problem for the solid cylinder, 
based on three-dimensional theory was given by Skalak [13]. 
He solved the problem of a sudden collinear impact of two 
semi-infinite solid rods using a Fourier-Laplace double 
transform technique. To invert the transforms, information 
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about the exact dispersion spectrum is needed. This shows the 
importance of the early works in this field mentioned 
previously. Later Folk et al. [14] treated the problem of an 
axial pressure suddenly applied to a laterally clamped end of a 
semi-infinite rod using a method of analysis similar though 
not identical to that of Skalak. Both Skalak [13] and Folk et 
al. [14] presented an explicit long-time farfield solution valid 
at the head of the pulse, different from the simple step pulse 
expected from one-dimensional theory. In a companion 
paper, Fox and Curtis [15] presented results from a shock 
tube experiment which are in agreement with the theoretical 
solution at the pulse head. The analytical method developed 
by Folk et al. has been applied to other problems for the solid 
rod. DeVault and Curtis [16] considered a nonaxisymmetric 
end load giving a flexural pulse. Jones and Norwood [17] 
treated both the step pressure problem and the related 
problem of a constant axial velocity suddenly applied to the 
end which is free from shear stresses. Additional terms in the 
solution showing the warping of the cross sections were also 
given. Kennedy and Jones [18] studied the effect of a radially 
dependent axial end load which by means of a parameter 
could be varied from a uniform distribution to a point load 
concentrated at the center. Results from numerical finite 
difference calculations were also presented. 

Numerical solutions to end load problems for cylinders 
based on the exact theory using finite difference technique 
were given by Bertholf [19], Alterman and Karal [20], and 
Nigul [21]. In [21] the pressure step problem for a hollow rod 
with a laterally clamped end was solved, and the results were 
given in a series of curves. The finite element method was used 
by Ramamurti and Ramanamurti [22] and recently by 
Bergman [23]. Experimental results, of interest in this'con
text, are the study of pulses produced by longitudinal impact 
on a relatively thin-walled tube by Heimann and Kolsky [24] 
and the pulse dispersion measurements by Fitch [25]. 

As far as the present author knows, no exact analytical 
solution (like those in [13, 14]) to any transient end-load wave 
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propagation problem for the hollow rod has been given. 
However, in a paper by Chong, Lee, and Cakmak [26], the 
double integral transform solution method developed in [14] 
was applied to the pressure step problem for the hollow rod. 
The authors used an approximate theory presented in [12]. It 
is a three-mode theory, taking extensional, radial, and axial 
shear motion into account. 

In the present work (see also [27]) the method of Folk et al. 
[14] is applied to the problem of an axial pressure applied to a 
laterally clamped end of a semi-infinite hollow rod, and to the 
related problem of a prescribed velocity at the end that is free 
from shear stresses. Explicit solutions are given for two types 
of time dependence for the end conditions: step function and 
finite rise time function. These solutions are valid asymp
totically at large distances from the end and at the head of the 
pulse. It should also be pointed out that the asymptotic 
solutions given here hold for a hollow cylinder with inner 
radius a and outer radius b with no restriction on the quotient 
alb. 

Statement of the Problem 

The equations of motion of a linear elastic solid in the 
axisymmetric, nontorsional case expressed in cylindrical 
coordinates are 

.. ^ „ dA „ dQ 

dr dz 

piiz=(\ + 2ix) 
dA 

IT 
2\x, d(rQ) 

r dr 

(1) 

(2) 

A is the dilatation and 0 is the only nonzero rotation com
ponent in this case. 

Prior to the application of the end loadings, the cylinder is 
assumed to be at rest, i.e., the initial conditions at t = 0 are 

ur = uz = 0, ur = uz=0 (3) 

The lateral surfaces are free from loading, so the boundary 
conditions at r = a and r = b for all z are 

°r = Trz=0 (4) 

Two different types of end loading at z = 0 are considered. 
In the following they will be called the end pressure problem 
and the end velocity problem, respectively. They are both of 
the mixed type. 

The End Pressure Problem. 

az(0,r,t) = -p(t), ur(0,r,t)=0 (5) 

Since the end condition (5) also implies that dur(0,r,t)ldr = 
0, it may be shown that 

-Pit) 
A(0,/y) = (6) 

\ + 2n 

The End Velocity Problem. 

rrz(0,r,t) = 0, uz(0,r,t)=w(t) (7) 

Since the end condition (7) also implies that duz(0,r,t)/dr = 
0, it may be shown that 

fl(0,/V) = 0 (8) 
The functions/?(0 and w(t) will be specified later. 

Integral Transforms 

The double-transform method of solution developed by 
Folk et al. [14] implies a choice of transforms that will ask 
only for the initial and boundary information given in the 
foregoing. The following set is used: sine, cosine transforms 
f8, f°, and Laplace transform gL: 

/ sinYZ dz, fC=\ f cosyz dz> ?L _ I g eiutdt 

Jo 

(9) 

The double transforms f81- and f°L are obtained if g = f8 or 
f°. The sine and cosine transforms have the following 
properties: 

(^y=-mr,»+yf, (^y=-yJ* (10) 
In the Laplace transform used here the usual transform 
variable is replaced by - iu>. co is complex and Im o> must be > 
some constant. For the end pressure problem, the sine 
transform is applied to equation (1) and the cosine transform 
to equation (2). For the end velocity problem the order is 
reversed. 

The doubly transformed equations of motion for both 
problems can be written in a concentrated form if the 
following formalism is introduced: 

The end pressure problem: * = SL, 0 = CL, Q = ypL I 
(A + 2/*), upper position and 
sign. 

The end velocity problem: * = CL,0 = SL,Q= - pu2wL I 
(X + 2/x), lower position and 
sign. 

Elimination of u* and u\ from these equations gives: 

-—r—+a2A* = Q, 
r or dr 

d 

Tr 
The solution is 

(~-^-rU0)+p2Q0 = 0, 02 

\ r dr / 

pw 

X + 2/i 

-r 

A* =A J0(ar) +BF0(ar,r) + -SL
OT 

&> = C^?p-+DPFlWr,r) 

(11) 

(12) 

(13) 

(14) 

J0 and Jx are the zeroth and first-order Bessel functions of the 
first kind. The second solutions F0 and Ft are taken as 

F0(r,r)=lnrJ00c)+S0to (15) 

J0 [x) dS0 (x) 
Fiix;r) =lnr J: (x) — 

x2 x4 ( 1 \ 

dx 
(16) 

+ 04-r) x" / J_ 
224262 V 2

 + 3 
(17) 

x stands for ar or fir. 
The conventional second solutions Y0 (x) and Yx (x) 

contain a factor Inx (instead of Inr). Since this would lead to 
difficulties in the inversion process, they are not used here. 
Ji /|S and /3Fj are used in the expressions for Q°, because they 
contain only even powers of (3 and are finite when P = 0. It 
remains to satisfy the boundary conditions (4). When the 
expressions for a* and r°rz are put = 0 at r = a and r = b, the 
following system of equations in the unknowns A etc. is 
obtained: 

Uj(a) UF(a) Vj(a) fi2VF(a) 

Uj(b) UF(b) Vj(b) &2VF(b) 

Xj(a) XF{a) Yj{a) &2YF(a) 

Xj(b) XF(b) Yj(b) p2YF(b) 

0<p 

B 

C 

D 

rn r 
0 

0 

(18) 
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where 

K = P2-y2, r=Xpa>2Q/((X + 2M)2/xo:
2) 

Uj(a) = - id0(aa) /2 + a2Ji(aa) /aa 

Vj(a) = *2y (J0tfa) -J^M/fia) 

Xj(a) = *yaJd<xa), Yj(a) =«/,(/3fl) /|3 
UF(a) etc. are obtained if the /-functions are replaced by the 
F-functions. The expressions Uj(b) etc., are analogous. 

The solution is A = Nx/G, B = N2/G etc., where G is the 
determinant of the system matrix and TV, is the determinant 
that is obtained when the /'th column in the system matrix is 
replaced by the column on the right-hand side. G = 0 is the 
frequency equation for harmonic waves in a hollow circular 
cylinder with free lateral surfaces, if 7 is interpreted as the 
wave number and co as the frequency. See [4, 5]. With A etc., 
determined, expressions for the double transforms of 
displacements, stresses, and strains may be found. 

Inversion of the Transforms 

The Fourier sine and cosine transforms will be inverted 
first. From the transform definitions (9) it is seen that the sine 
transform is an odd function of 7 and that the cosine trans
form is an even function of 7. Therefore, the inversion in
tegrals may be written 

if" I f 0 0 

fLe'-<zdy and — fLehzdy (19) 
7T J - ° ° TT J - ° ° 

From an inspection of the system (18) it is seen that all the 
quantities A, B, C, and D are functions of even powers of a 
and /3. Since this implies that both A* and Q° contain only 
even powers of a and fi, this can be shown to be the case for 
any displacement, stress, or strain. Hence, there are no 
branch points of the integrand in the complex 7 plane. 

The inversion is to be taken along the real 7-axis. To 
evaluate the integral with the aid of Cauchy's residue 
theorem, the path of integration is closed in the upper half of 
the complex 7 plane. For large I7I, the asymptotic forms of 
the functions J0, F0, etc. may be used to show that if / i s any 
transformed displacement, stress, or strain, then l/l — 0 as 
I7I — 00. Hence Jordan's lemma applies to the integral over 
the semicircle, which thus vanishes for any displacement, 
stress, or strain as I7I —• 00. Since there are no branch points, 
the result of the inversion is equal to 27r; times the sum of the 
residues evaluated at the poles in the upper half plane. 

There appears to be poles at a2 = 0 , since A, B, C, and D 
are all proportional to 1/a2 and the double transform of A 
contains the term Q/a2. However, when a = 0, equation (11) 
has the solution 

Or2 

A*=A+B In r+^— (20) 

Thus, since any transformed quantity depends on a—A* only, 
it is seen that there exist finite limiting values when a — 0, 
i.e., no poles, for any transformed displacement, stress, or 
strain. 

The remaining poles are determined from G = 0. The 
position of such a pole depends on co and is denoted yn (co). 
The imaginary part of yn (co) must be positive because of the 
choice of integration path. When co is real, the 7n are the 
branches of the frequency equation for harmonic waves. In 
the Laplace inversion, the integration over co will be taken 
along a line parallel and limitingly close to the real axis (co = £ 
+ it, e > 0) for all reasonable choices of p(t) and w(t). We 
may write 

7«(«)=7» (*)+*» (21) 
where <5„ vanishes as co — £. The formal solution is then 

obtained by carrying out the Laplace inversion. Here g stands 
for any displacement, stress, or strain. 

_ _ , J (• OO + IC 

g(z,r,t)= IJ —\ M(7„(co),r,co)eexp [i(ynz-ut)}dlj 

„ 2ir J -oo + ie 
(22) 

The denominator of Mis 8G/dy \y=y (u). Mis proportional 
to Q, and thus proportional to pL and wL as well. These 
integrals can not be evaluated exactly by simple means. 
However, asymptotic solutions valid at large distances from 
the end may be found. 

Evaluation for Large z 

Near the end, the evaluation is very difficult, among other 
things because of the branches with complex 7,, (£). At large 
distance from the end z = 0, only branches with real 7„(£) 
can be expected to give significant contributions. It is thus 
obvious that much information about the solutions for 
displacements etc. in this region is obtained from the real 
solutions to the frequency equation for harmonic waves, i.e., 
the dispersion curves. 

The situation in the hollow rod case is much more com
plicated than in the solid rod case, since in addition to a 
dependence on the Poisson's ratio v we have a dependence on 
a geometrical parameter such as alb. It is not the purpose of 
this work to make a detailed investigation of the frequency 
spectrum. However, many arguments from the analysis of the 
solid rod as to asymptotic behavior can be expected to apply 
here as well. The time dependence of the prescribed quantities 
(p(t) or w(t)) at z = 0 has great influence on the results of 
the analysis. In the subsequent treatment, thepL and vL = — 
ioiwL (i.e., the Laplace transform of the end velocity v(t) = 
w(t)) are chosen from the class of functions having a simple 
pole at co = 0 and no other poles. 

According to the saddle point method of integration, e.g. 
[35], the main contribution at a distance z and at a time t 
comes from the part of any branch in the spectrum near the 
point where dy„/dw — t/z, the saddle point. In general the 
total result is a sum of contributions from several branches. 
The ordinary saddle point expressions are not valid ap
proximations when there are poles or zeros of the integrand 
near the saddle point, or when the quantity z d2y„/dw2 is 
small in that region. These exceptions are, however, very 
important in this special application. 

The condition d2y„/dw2 = 0 at some point in the spectrum 
means that the y„, £ curve has zero curvature. This implies 
that the group velocity cg = du/dy = [dy/dw]^1 has a 
maximum or a minimum value there. The onset (for 
maximum cg) of the contribution from the second branch was 
verified experimentally for the solid rod by Curtis [28]. 

It is of interest to study the values of the maximum group 
velocities of different branches in relation to the rod velocity 
c0 = (E/f>yn. For the hollow rod, Chong, Lee, and Cakmak 
[26] showed that the maximum group velocity of the second 
branch exceeds c0 if b/a is less than about 1.7 (depending 
slightly on Poisson's ratio v). A few years earlier Heimann 
and Kolsky [24] gave experimental results that seem to 
support this. 

Asymptotic Contribution From the First Branch 

When the integrand has a pole in a point where d2y/dw2 = 
0, the result is a nondecaying contribution valid at large z and 
near the time t = z/cg. Whenp7, or wL have a simple pole at co 
= 0, such a result is obtained from the coincidence of this 
pole with the group velocity maximum of the first branch at co 
= 0 where cg = c0. It was shown by Chree [4] that the first 
two terms in the series expansion about this point (co = 7 = 0) 
are 
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Fig. 1 Semi-infinite hollow rod with axisymmetric coordinates r and z 
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1 + 

al° a/b = 0.95 

Fig. 2 The influence of a/b on the asymptotic result. Step end con
dition. 

§<n) 

1 -

1/3-

z/b=20 z / b = l 0 0 

t-z/cn 

- 6 - 3 0 3 6 9 12 b/c0 
Fig. 3 The dispersive character of the asymptotic result. Step end 
condition, c = 1/3, a/b = 1/2. 

k=v2 •+b2 

(23) 

+ (24) 

— =y-ky1 + • • • , 
Co 

This may be inverted to give 

co / co \ • 
7 = — + * ( — ) 

When the system of equations (18) is solved in the limit co » 
co7 -* 0> the quantities 5 and D vanish. Thus in this case the 
contributions come from the low argument forms of the J-
functions only. The asympotic form of the first branch part of 
(22) for the axial stress az (all other stress components are 
vanishingly small) and for ez, er, e„ and ur then becomes 

(\/E 

l l /Co ) ' • 

•E,-\,v,v,vr)I (25) (az,ez,er,eg,ur) = 

where 

/= kYZ, {t ]exp'[-*('- 0+zk(03 h 
(26) 

Thus it is seen that for large distances, i.e., z » b, the 
solutions to the two problems have the same form, although 
the conditions at z = 0 are quite different. 

Using the convolution theorem, the result (26) may be 
written 

m v r ) T t o = 0 t0=r 

Fig. 4 The influence of different rise times on the asymptotic result at 
a certain distance z. Finite rise time end condition. 

TO.VT) T=t 0 /2 

Fig. 5 The asymptotic result at different distances z for a certain rise 
time t0. Finite rise time end condition. 

where 

r3^2 i 1 / 3 l 
L 4 J c0 

(27) 

(28) 

The simplest example of a function whose Laplace transform 
has a simple pole in co = 0 is the Heaviside step function 
H(t). W i t h p ( 0 = p0H(t) or v(t) = v0H(t) (correspond-H(t). Withp(t) =p0H(t) 
i n g t o w ( 0 = v0tH(t)) we get 

'-(£}j: Ai(—s)ds, n = ' - ^ (29) 

Since \0_„Ai(-s)ds = 1/3, this can be written in the 
equivalent form 

K;°)L I /3+S:^-H (30) 

The expression within brackets is a function $(r/) . See Fig. 4 
for t0 = 0. It is the analogy of the result for the solid rod 
given in [13,14, 17]. The maximum value is 1.274 occurring at 
i) = 2.338 (the first zero of Ai( -x)). Note also that at the 
time t = z/c0, i.e., when rj = 0, it has the value 1/3. The 
dependence on a/b is shown in Fig. 2. The dispersive 
character is revealed in Fig. 3. The period of the oscillations 
increases as z increases, since the argument ij is proportional 
toZ-u\ 

Any attempt to realize a step function in practice will imply 
a finite rise time. Therefore it is of interest to study the case 
when the end loadings start from zero and rise monotonously 
to a constant value in a finite time t0. It may be shown (see 
[27]) that the Laplace transform of such a function has a pole 
in co = 0. To study the effect of a finite rise time quan
titatively, the special case with a linear rising portion is 
chosen, i.e.,p{t) = Pof(t) or v(t) = Vof(t), where 

f(t)=^-[tH(t)-(t-t0)H(t-t0)] 
'o 

(3D 
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In this case the convolution integral can be reduced to 

'•(;)[T^!.-V.H 
where 

G(s) = ( Ai(-u)du = $(s)-1/3 (33) 

The expression within brackets in (32) is a function y(t],t0/T). 
It is plotted in Fig. 4 (T constant, t0 varied) and in Fig. 5 (t0 

constant, T varied) with the aid of series expansions. It is seen 
from Fig. 4 that the main effect of the finite rise time is a 
reduction of the oscillation amplitude at a certain distance. 
The peak value = 1.274 when t0 = 0 approaches 1 when tQ/r 
» 1. When t0/r < 0.5 the result is essentially the curve for 
t0 = 0 in Fig. 4 displaced tQ/2r to the right. It is seen from 
Fig. 5 that the result is close to the nondispersive result when r 
= t0/4. Note also the rise of the oscillation amplitude as T, 
and thus z, increases. 

The results given in this section are valid for large z, i.e., z 
» b and for t close to z/c0 according to the saddle point 
approximation. Since no assumption has been made about the 
relation between the inner radius a and the outer radius b, it is 
valid for a hollow rod with small inner radius as well as for a 
thin-walled cylindrical shell. 

Validity of the Asymptotic Result: Step End Condition 

The quantity T can be written in dimensionless form: 

^ = [1*1+(f l/*)*)i. J'" (34) 

Thus it is seen that for fixed c0 and b it depends on the 
parameters v and alb and on z/b. 

The question arises whether or not it is possible to say how 
great z has to be to insure that the asymptotic result be valid. 
Since no wave in a linear elastic solid can travel faster than the 
dilatational velocity cx, any valid result must be zero in the 
region t < zlcx. If the asymptotic result is to be valid, it must 
at least be separated from the expected dilatational pulse at t 
= z/cu i.e., at / = z/cx the asymptotic result must be 
evanescent. The function $(17) decays rapidly when 17 < 0, 
and it is negligible when 17 < - 3 ($ ( -3 ) = 0.0034), so the 
separation condition could for example, be written, 

This inequality may be written as a conduction for z/b: 

z 9 r ,i1/2 v 

T > T [ 1 + ( " 6 ) 2 ] ( 1 ^ 7 ^ (36) 

The right-hand side of (36) is given in Table 1 for some 
combinations of v and alb. It exhibits a strong dependence on 
v, whereas alb has small influence. The condition (36) should 
be regarded as a necessary condition, suited for practical 
applications of this theory. 

Discussion 

The assumption that the asymptotic solution given here is 
the only nondecaying contribution for large z is based on the 
presupposition that all contributions from branches other 
than the first decay with z- Since the rise in amplitude near t 
= z/c0 is a quasi-wave front, i.e., not a propagating 
discontinuity, the question arises whether there can exist some 
"signal" (or wave front) traveling with the dilatational 
velocity cx, which is always greater than the rod velocity c0. 
The numerical results of Bertholf [19] for the solid rod with 
the nonmixed end condition 

Table 1 The necessary minimum value {z/b)] 

0.1 
0.2 
0.3 
0.4 
0.5 

(Zlb)mm 

foro = 0 

381 
77.4 
26.3 
10.1 
2.25 

(z/b)min 

for alb = 0.5 
426 
86.6 
29.4 
11.3 
2.52 

(*/*>) min 
for <z/6 = 0.95 

526 
107 
36.3 
13.9 
3.10 

az=-p0H(t), rrz=0 (37) 

show that the radial displacement and the axial strain both 
become nonzero at the time t = z/cx at distances up to a few 
diameters from the end. Nigul [21] gave numerical results for 
the hollow rod (h/R = 0.2) in the case when the end con
ditions are 

az=-p0H(t), « r = 0 (38) 

The curves given in [21] for the axial stress az at different 
distances all have a narrow peak at t = z/cx. There is also the 
expected rise of the amplitude near / = z/c0. It remains to 
investigate whether the peak at / = z/cx is a consequence of 
the special end conditions or if such a phenomenon also can 
exist when the end conditions are otherwise. It is reasonable to 
assume that any type of dilatational front can be explained 
with the aid of the higher branches in the frequency spectrum. 
Hutchinson and Percival [29] showed that for the solid rod 
the maximum group velocity of the higher branches is the 
dilatational velocity cx. If this is true for the hollow rod as 
well, a phenomenon like the peak could perhaps be explained 
as a sum of contributions from these maxima. 

It is interesting to compare the results of this work with 
previously published solutions where approximate theories 
have been used. Berkowitz [30] solved an impact problem 
using the membrane theory, which is a thin shell theory, and 
Chong, Lee, and Cakmak [26] used a three-mode shell theory 
given in [12] to solve the end pressure problem (both mixed 
and nonmixed). The results of both [30] and [26] at t ~ z/c0 

are in agreement with equation (30). It should however be 
noted that in [30] the counterpart of (28) contains the mean 
radius R instead of ((a2 + b2)/2)l/1. However, the relative 
difference between these two quantities is less than 0.13 
percent when h/R < 0.1. The wave front traveling with the 
plate velocity cp = {El (p(l - c2))) l /2 given in [30] is a con
sequence of the assumption of plane stress within the shell 
wall implicit in the membrane theory and in many other thin 
shell theories. It seems to have no counterpart in the three-
dimensional analysis. As to [26] it is found that to make their 
head of the pulse solution in agreement with the results of the 
present work, the adjustment factors kx and k3 of the ap
proximate thick shell theory should satisfy the condition kx = 
k3 = 1. 
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Dynamic Stresses and 
Displacements Around Cylindrical 
Cavities of Arbitrary Shape 
Dynamic stresses and displacements around cylindrical cavities of various shapes, 
namely, circular, triangular, and square cavities are presented in this paper. Also 
presented are results for a pair of circular cavities of equal radii and a pair of cir
cular and square cavities. These results are of interest in estimating the effects of 
corners and multiple scattering on the distribution of dynamic displacements and 
stresses around cylindrical holes or openings. Since exact analytical solutios are not 
available in these cases {except for a single circular hole) a numerical technique 
combining the finite element method (FEM) and the method of eigenfunction 
expansions is used here. 

Introduction 

Diffraction of elastic waves by circular cylindrical obstacles 
(cavities, rigid and elastic inclusions) has been studied by 
many authors. The quantities of engineering interest are the 
dynamic stresses and displacements around this inclusion or 
cavity boundary. Also of interest are the scattered 
displacement or stress amplitudes far away from this obstacle. 

The near-field dynamic stresses and displacements have 
been studied in [1-5]. A comprehensive review of the subject 
of elastic wave diffraction by circular cylindrical discon
tinuities and dynamic stress concentration can be found in [6], 
where the diffraction of antiplane strain elastic waves by 
cylinders of elliptical and parabolic cross sections are also 
discussed. All these works rely on the representation of the 
displacement field in terms of eigenfunctions obtained by 
separation of variables. 

In many practical applications the geometry is such that the 
eigenfunction expansion method is not applicable or is too 
cumbersome. A problem of the latter type involves elliptical 
or parabolic geometries. Diffraction by an elliptic cylinder 
has been studied in [7] using eigenfunction expansions. 

Because of the limitation of the eigenfunction expansion 
method several numerical techniques have been employed to 
solve scattering by bodies of general shapes. Some of these 
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are: the moment method, the T-matrix formulation, and the 
boundary element method. Recently we have used a combined 
finite element and eigenfunction expansion technique 
(FEEET) [8] to study diffraction by a single scatterer or a 
cluster of scatterers of general shapes. In [8] we presented the 
scattered far-field results. In the present paper we discuss the 
displacements and stresses around a single cylindrical opening 
or a pair of openings. 

The method is outlined briefly in the following section, 
which is followed by a discussion of the numerical results for 
the cases when the incident wave is either a plane longitudinal 
wave or a plane SV-wave. 

Formulation and Solution 

For the case of plane-strain, a hybrid, combined analytical 
and numerical method was presented in our previous paper 
[8]. Hence, only a brief description of this method will be 
given here. 

As shown in Fig. 1 interior region R2, bounded by a circular 
boundary B of radius RB contains all the scattering cavities, 
inhomogeneities and anisotropy. The exterior host region R{ 
is assumed to be isotropic and homogeneous having Lame 
constants X and n and mass density p. The displacement 
associated with the plane incident waves is denoted by 
u(,) (x,y;t) and it will be assumed that their directions of 
propagation make an angle y with the x-axis. Only harmonic 
time dependence of the form e~iul, where o> is the circular 
frequency, will beconsidered. 

Subdividing R2 into finite elements having N, + NB 
number of modes, Nr being the number of interior nodes and 
NB the number of boundary nodes, and minimizing the 
energy functional, the equations of motion can be written as 
[8] 
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Fig. 1 Geometry of the problem 
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(1) 

in which the vector p$> represents the interaction forces 
between the regions Rt and R2 at the boundary nodes. The 
elemental impedance matrices S,y are defined as 

[Se] = \R \(mTlD\m-pe<S[L]T[L])dx dy (2) 

where 

[Be 

a 
to 

0 

a 
ay 

0 

a 
9y 

a 
to 

Z,, 0 L 2 . . . " 

0 Li 0 . . . 
= [N][L] 

NB/2 
u ^ ' = XJ [ f l n ^ - D s i n ^ - l)d + d„gtM sin « tf 

« = i 

+ b„g,^) cos n d + c„g,("-l)cos(n-\)d], 

(6) 
where the functions grw , g,jn) have been defined in [8], 
These are functions of r and satisfy the radiation conditions as 
r — oo. 

Evaluating equations (5) and (6) at each of the NB points on 
the circular boundary B the scattered displacement vector 
I qr^) ) can be written as 

llrp)=lG\[a), (7) 

where the components of qrfl in polar coordinates are wr(S) 
and udis) (J = 1, NB). In writing equation (7) the constants 
an, b„,c„, d„ have been written as the vector j a) with 

a„=a„ , n=\, • • • ,NB/2, 

dn=a,,+NB/2 , n = l, • • • ,NB/2 

b,,=a„+NB , « = ! , - • • ,NB/2, 

c„=a„ n = \, ,NB/2, Jn + iNB/2 

Using the strain-displacement and stress-strain relations, 
the nodal stress vector can be written from equations (5)-(7) 
as 

{^}={F]{a}=[F]lG]-'lqrjs) ). (8) 

Now to compute the interaction force p^s) it is assumed that 
the circular contour is divided into NB equidistant points. 
Then pB

s) is calculated as 

lpB
s)}=[Sf]{qB

s)}, (9) 

where[S7] = RB(2TT/NB)[T\T[F][G]-,[T] and the com
ponent Tj of the transformation matrix is 

~cos d: sin !?; 

[7"/] = 
- Sin !?; COS !?; 

Note that [L] is a 2 x 2Ne matrix representing the shape 
functions. 

For isotropic material [D] is a square 3 x 3 matrix given by 

\e + 2ne \e 0 

[£>] = 

o 
\e + 2ne 0 

0 ne 

It is seen from equation (1) that if boundary nodal 
displacements q$' are known, the interior nodal replacements 
q f can be evaluated as 

(qP)) = -[S / / ]~
1 [S, f i ] fqg )) (3) 

The nodal interaction forces are then obtained from the 
equation 

{p(i)} = [SBB-SBISf,lSIB]lqim (4) 

Note that SBI = SJB. 
Alternatively equation (4) can be used to calculate f qg') in 

terms of the nodal forces (p$' j . Equation (3) then is used to 
calculate the internal nodal displacements. 

In the exterior region R{ the scattered displacement 
components in polar coordinates can be written as [8] 

NB/2 

UrS) ~ X) \anSr\"~A) C 0 S (" ~ l)d + d„gr["> COS U I? 

+ b„gr^)smn d + c„grt"-» sm(n- l)d], (5) 

The unknown coefficient vector (a}, the boundary and 
interior nodal displacements (q$') and {qP) are now 
determined by imposing the continuity of displacements and 
traction force at the boundary nodes. Thus 

( q g ) ] = {qir , )) + l q i ' ) } , (10) 

(pg )) = (P^ ) ) + (l (11) 

The vectors (p# ' ) and (q^° 1 are the incident displacement 
and traction force vectors, respectively, on the boundary. 

From equations (4), (10), and (11) the nodal displacements 
(q$>) are found from the equation 

[SBB-Sf~SBISrI
lS,B][qS>) = {p],'> } -[Sf][q}P } . (12) 

Knowing (qg') the interior nodal displacements are found 
from equation (3) and the scattered displacement field {qB

s) j 
is obtained from equations (9), (6), (5), and (7). 

The procedure outlined in the foregoing was used to solve 
first the case of single scattering by a circular cylindrical 
cavity. Numerical results obtained by the present method were 
found to agree very well with the exact solution. These and 
other results are discussed in the next section. 

Numerical Results and Discussion 

Diffraction of a plane P and a plane SV wave by a single 
cavity of circular triangular, and square shapes is studied by 
the method outlined in the foregoing. Also studied are 
scattering by a pair of circular cavities, and two cavities, one 
of which is circular and the other, square. For all the 
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Fig. 2 Comparison of the exact and FEEET calculations for I 
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Fig. 3 Comparison of the exact and FEEET calculations for the nor
malized radial displacement of the circular cavity wall. P wave incident 
at 7 = Odeg, k2a = 2.0. 

numerical computations the Poisson's ratio of the host 
medium was assumed to be tr = 0.3. To test the accuracy of the 
present numerical method, results were first checked with the 
exact solutions for a single circular cavity. Figures 2 and 3 
show the polar plots of the normalized absolute value of the 
hoop stress, I oee/o0 I, and the normalized radial displacement 
for different values of k2a. Here a is the radius of the circular 
cavity and k2 = oi/C2, C2 being the shear wave speed in the 
medium. Note that the incident wave is a P wave represented 
by 

= v •>«•> 

— CIRCLE 
— SQUARE 

TRIANGLE 

Fig.4 Normal displacement of cavity walls, y = Odeg, fr2a = 1.0. 

& * # « . 

• , & % * . 
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CIRCLE I | 
- CIRCLE 2_j 

CIRCLE 1 
—*- SQUARE 

2 CIRCLES 

SQUARE* CIRCLE 

Fig. 5 Normal displacements of a pair of cavity walls. 7 = 0 deg, ( t 2a 
= 1.0. 

CIRCLE I 
2 CIRCLES 

SQUARE + CIRCLE 

* ( 0 = J^eni"J„(k1r)cosn(d-y), (13) 

Here e0 = 1, e„ = 2(n > 0). For the purpose of applying the 
method outlined in the preceding section, the circular cavity C 
was enclosed by another circle B with RB = 1.3a, a being the 
radius of C. The region in between B and C was divided up 
into finite elements. Various elements were used including 
constant strain triangles (CST). Total number of nodes on B 

6.0 8.0 

Fig. 6 Normal displacements of a pair of cavity walls. 7 = - 4 5 deg, 
fc2a = 1.0. 

was taken to be 48 and three circular contours (including Q 
used. It was found that increasing the region R2 by adding 
another circular contour did not cause any appreciable 
change. It was found that higher order elements gave better 
results. However, the improvement from four-node 
quadrilateral to eight-node quadrilateral was not very large. 
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k2a = 0.15. 
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Even the constant strain triangle (CST) was found not to 
deviate much. In all the results presented in this paper mostly 
four-node elements in conjunction with some CST and five-
node quadrilaterals were used. As can be seen from these 
figures the results obtained by the present method agree very 
well with the exact ones. Agreement was found to be well at 
lower k2a also. 

Figures 4-6 show the polar plots of the normalized am
plitudes (\uN/uQ I) °f the normal displacements at the cavity 
walls. Note that a0 = ixk\ and u0 = kx. Here kx = u/C,, d 
is the P wave speed. The orientation of the triangle with 
respect to the incident wave direction is shown in the figure. It 
is seen that at long wavelengths the normal displacements of 
circular and square cavity walls are symmetric about x and y-
axes, but for triangular hole larger displacements occur on the 
shadow side than on the illuminated side. It should be pointed 
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out that normal displacements and the tangential stresses were 
computed at the midpoints between the nodes and that the 
corners were always nodes. It is noted that a segment of 
square boundary on the illuminated side moves by the same 
amount as the circle. This is seen to be true even when k2a is 
quite large (Fig. 4). It was found that for the triangle 
maximum normal displacement occurs at around k2a = 1.5, 
for the square at k2a = 0.75. For all three shapes the 
maximum occurs on the illuminated side. 

It was found that at long wavelengths the presence of the 
second circle nearly doubles the normal displacement on both 
of them from the value when there is only one and that the 
normal displacements are the same on both circles and that 
replacing the second circle by a square did not change the 
values on the first one. (For lack of space these results are not 
shown here.) As the frequency increases the interference 
effects change the displacements considerably (Fig. 14). It is 
found that the maximum normal displacements now occur on 
the square. 

Polar plots of normalized hoop stresses around single 
circular and triangular holes are shown in Fig. 7 and the 
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Fig. 11 Polar plots of normal displacement amplitudes. 
square;— —triangle; circle. 7 = 0deg,k2a = 2.0. 
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Fig. 12 Polar plots of hoop stress amplitudes. 7 = 0 deg, k2a = 1.0. 
Legends are as in Fig. 11. 

corresponding results for a pair of circles are shown in Fig. 8. 
Results for a square, and a circle in the presence of a square 
are omitted in order not to clutter up the figures. It is found 
that when 7 = 0 deg, maximum hoop stress occurs (as ex
pected) near the two corners of the triangular hole, whereas 
for the circle it is near § = 90 deg and 270 deg. Figure 8 shows 
the considerable changes that occur due to interference. 

Finally, Figs. 9 and 10 show the variations of the maximum 
hoop stress as the frequency changes. It is seen that in all cases 
the maximum hoop stress increases first as the frequency 
increases from zero, but then decreases with increasing 
frequency. For a triangle it is seen that the maximum hoop 
stress oscillates at high frequencies. Also, interference effects 
between the two circles are clearly visible in the case of a pair 
of circles. 

Figures 11-14 show some results for an incident plane SV 
wave. In this case 

u<'»=V " (Vnez) 
00 

^<0 '= Eeni"Jn(k2r)coSn(d-y) (14) 

Figure 11 shows the polar plot of the magnitude of the 
normal displacements (\UN/u0\) around the cavity walls 
when 7 = 0 deg. It would be expected from symmetry that 
this goes to zero at 1? = 0 deg and 180 deg. As can be seen the 
normal displacement for the circle goes smoothly to zero at 
these points. However, for a square it decreases abruptly as 
these points are approached showing the significant influence 
of the corners. But notice the significantly different behavior 

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 
K2A 

Fig. 14 Maximum hoop stress amplitudes versus frequency, y = - 4 5 
deg. Legends are as in Fig. 13. 

in the case of the triangle on the illuminated side near vertex. 
The displacement drops steeply to zero only as the vertex is 
approached. 

The hoop stress distribution around single cavities are 
shown in Fig. 12. It was found that for the triangle at long 
wavelengths the same maximum occurs near all the corners 
and that the distribution is the same for 7 = 0 deg and 180 
deg. As Fig. 12 shows, at high frequencies the maximum 
occurs near the corners of the base when 7 = 0 deg. It was 
found, however, that when 7 = 180 deg the maximum oc
curred near the vertex. Maximum hoop stresses on a pair of 
scatterers are also quite different from those on single scat
tered. It is found that when 7 = -45 deg the maximum 
normal displacement reaches a very large value when the pair 
of scatterers is composed of a circle and square. Maximum 
hoop stress is shown in Figs. 13 and 14. These figures are to be 
contrasted with Figs. 9 and 10. It is seen that larger stresses 
are caused by shear waves than by longitudinal waves. Note 
that in the static limit when 7 = 0 deg the maximum hoop 
stress on the triangle is larger than that on a circle, which is 
larger than that on a pair of circles. These are however quite 
close. For 7 = - 45 deg, on the other hand, the same relative 
ordering holds, but they are farther apart now. This is to be 
contrasted with the results for the longitudinal wave. There 
the same ordering is found to hold, but with larger spread 
when 7 = 0 deg. For 7 = - 45 deg, however, the maximum 
hoop stress on a pair of circles is larger than that on one. 
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A Hybrid/Finite Element Approach 
for Stress Analysis of Notched 
Anisotropic Materials 
A hybrid/finite element is proposed to calculate stresses or stress intensity factors at 
notches, fillets, cutouts, or other geometric discontinuities in plane-loaded 
anisotropic materials. Stress and displacement fields assumed in the element satisfy 
all governing elasticity equations. Furthermore, the shape and stress-free conditions 
of the discontinuity are modeled exactly using conformal mapping and analytic 
continuation. Continuity of analytic and finite element displacement fields on the 
remaining element boundary are enforced in an approximate manner with a 
variational principle. Numerical results are presented for both elliptical void and 
circular fillet hybrid elements. Comparisons are made to analytic solutions. Results 
indicate that structural models using a hybrid element with a coarse conventional 
element mesh yield efficient and accurate calculations of critical stresses. 

Introduction 

A hybrid/finite element (FE) approach is proposed to 
accurately calculate critical stresses or stress intensity factors 
associated with notches, fillets, or cutouts in plane-loaded 
anisotropic materials. Efficient structural design requires 
calculation of stress concentration factors (SCF) for many 
complex shapes. For example, SCF associated with wood 
beams containing rectangular, filleted edge notches are 
required for efficient design of wood pallets. Contemporary 
design handbooks, such as [1], are based predominately on 
photoelasticity studies. These results provide SCF for 
isotropic materials only. Recent experimental studies, 
however, do consider composite [2, 3] as well as isotropic 
[4-6] sheets. 

Analytic approaches to calculate critical stresses are limited 
to problems involving voids of rather simple shape in infinite 
domains. Savin [7] extended the complex variable approach 
of Muskhelishvili [8] and derived a solution for an elliptical 
hole in a plane-loaded, infinite, anisotropic sheet. (A rather 
comprehensive review of research concerning bending of 
anisotropic plates with holes is available [9].) Recent analytic 
efforts have considered holes in both isotropic [10] and 
anisotropic [11] sheets. Significantly, the integral equation 
solution by Krenk [11] remains valid when the characteristic 
equation has multiple roots, i.e., for isotropic materials. 
Other related studies include circular holes in cylindrically 
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orthotropic plates [12], rectangular [13] and K-shaped [14] 
voids in isotropic half planes. Also, Dhir [15] optimized hole 
shapes in infinite, isotropic sheets using an 
analytical/numerical procedure. 

Numerical approaches can analyze problems involving 
finite domains. Various notches and cutouts in isotropic 
materials were modeled using the boundary integral equation 
technique [16-19], Nikooyeh and Robinson [16] used this 
technique (in conjunction with expansions of improper 
Williams solutions for sharp corners [20]) to compute stresses 
at fillets of very small radii. Ogonowski [21] analyzed loaded 
holes in finite, orthotropic sheets using collocation. In other 
approaches, truncated power series expansions have been 
used to approximate the cutout shape [22, 23]. Rowlands et 
al. [2] compared such a solution with experimental results 
from a tensile-loaded composite plate containing a rec
tangular filleted cutout. The experimental and calculated SCF 
differed by 35 percent. 

Stresses in composite [24, 25] and isotropic [26, 27] 
materials containing notches or fillets have been computed 
with conventional FE's. However, displacement-based 
elements have difficulty computing accurate SCF for several 
reasons, (a) Reliable calculation of stresses requires 
evaluation at interior (Gauss) points [28]. Thus, evaluation of 
edge stresses requires extrapolation, although alternative 
approaches have been proposed recently [29, 30]. (b) The 
displacement functions do not implicitly satisfy the free-
surface boundary conditions [29]. (c) Approximating the 
shape of the notch or void by polynomial functions causes an 
error. Furthermore, using certain elements in curved shapes 
can cause an additional error [31, 32]. These cited difficulties 
dictate extremely small mesh sizes for stress analysis of the 
problems considered in this paper. (However, for certain 
problems, SCF were computed with a coarse FE mesh in 
conjunction with the J integral [33, 34].) In models of a gear 
root fillet [27] and a notched coupon specimen [25], 1356 and 
998 elements were used, respectively. 
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In this paper, a hybrid/FE formulation is proposed that 
eliminates the difficulties cited in the preceding paragraph. A 
hybrid element is derived to structurally model the region of 
the notch or void. The assumed displacement and stress fields 
in the element's interior satisfy all governing differential 
equations of linear elasticity theory. Conformal mapping and 
reflection arguments, respectively, are used to model the 
shape and stress-free conditions of the notch exactly. A 
continuous representation of critical stresses is computed 
directly. This approach has some similarities to a combined 
modified mapping-collocation (MMC) and FE method used 
to model fillets [35] and elliptical cutouts [36] in isotropic 
materials. However, the method presented in this paper has 
several major advantages when compared to the combined 
MMC and FE technique. (0 The proposed method utilizes a 
variational principle to systematically connect the analytic 
and numerical representations of the structure. The combined 
MMC and FE method introduces a fictitious band of FE's for 
the connection, (ii) The proposed method computes the 
stiffness matrix for the hybrid element in terms of nodal 
displacements. Thus, insertion into existing FE programs is 
readily achieved. (Hi) The combined MMC and FE method 
requires a large number of terms in the series expansions (with 
a least squares reduction) due to the sensitivity of the results 
to the location of boundary points. The method presented in 
this paper provides accurate results with very few terms, (iv) 
The proposed method is formulated in terms of an arbitrary 
conformal mapping function. This approach allows modeling 
diverse shapes of notches, fillets, cutouts, etc. 
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(b) CIRCULAR FILLET 
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Analytic Representation 

In this section, analytic representations for displacement and 
stress fields in the interior of the hybrid element are derived. 
Consider a region A in a plane-loaded anisotropic material 
with (x, y) physical coordinates. Define the complex variables 
Zj (j = 1,2) by the affine transformation [37] 

Zj = yjZ + SjZ'> 7 = 1.2 (1) 
wherez = x + iy, 7y = (1 - w,)/2, and 5,- = (1 + iSj)/2. The 
constant/ = V - l , z is the complex conjugate of z, and Sj 
(/' = 1,2) are distinct roots of the characteristic equation 

Dns
4 - 2Dns

3 + (2Dn +Dn)s
2 - 2D23s+D22 = 0 (2) 

with positive imaginary parts. (Real roots to equation (2) do 
not exist [7]. For multiple roots, an isotropic formulation is 
required.) The material constants D^ are components of the 
elastic compliance matrix [D\. 

Remarkably, all governing differential equations of linear 
elasticity theory are satisfied in region A by any pair of 
functions 4>(z\) and \j/(z2) which are analytic in the complex 
variables Z\ and z2, respectively [7]. The stress (axx, ayy, axy) 
and displacement (u, v) components can be expressed in terms 
of<Kz,)andiKz2)[7]. 
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(4) 

The notation Re denotes the real part, the prime denotes a 
derivative with respect to the independent variable, the 
constants pjs qj (j = 1,2) are defined in the Appendix, and 
the constants C0, u0, v0 are associated with rigid body 
motion. 

Now suppose a notch, fillet, cutout, or other geometric 
discontinuity, defined by a curve T, exists in the anisotropic 
material. Furthermore, assume an analytic function co(f) 
exists that maps either the unit circle or the real axis in a 
complex f plane onto T in the z plane. Define r f as the shape 
of the discontinuity in the f plane. Elliptical void and circular 
fillet mappings are depicted in Fig. 1. Many different shapes 
of T can be modeled in this manner since numerous mapping 
functions are known. In fact, functions for mapping the unit 
circle onto V—, U-, and keyhole-shaped notches have been 
recently found [38]. For the anisotropic formulation 
presented here, induced functions w/(f)) (no sum on j) 
associated with mappings from complex tj to Zj planes were 
constructed from equation (1). 

(5) Z;=7/«(i)+ «/«(?')-«;(&) 
The constant / = 1 when Tf is the unit circle and / = 1 when 
r f is the real axis. Equation (5) for / = - 1 had been obtained 
by Milne-Thomson [37], For both cases, f' = f for all f on 

Using equation (5), the stress and displacement components 
from equations (3) and (4) can be expressed in terms of £, 
since </.'fei)=0'(f,)/«i'(f,) and *'(z2)= ^ ( fcV^fo) . The 
analyticity of the induced mapping functions oij(tj) 
guarantees that the governing differential equations are 
satisfied by 0(f,) and ^(f2). 

The rather simple shapes of r f enable satisfaction of stress-
free conditions on T using the principle of analytic con
tinuation. The author satisfied these conditions exactly by 
taking </>(fi) and i/Kfo)m the form: 

Journal of Applied Mechanics DECEMBER 1984, Vol. 51/805 

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



*(r1)=/7(fi) 
and 

m)=m?b+cpu2) (6) 

The constants B and C are defined in the Appendix. F is an 
arbitrary function which is analytic on T f. For unit circle 
mappings, Bowie and Freese [39] previously obtained 
equation (6). Note the ease and general applicability of 
satisfying stress-free conditions on Y with a complex variable 
approach. Contrastingly, eigenvalue techniques are com
plicated for anisotropic problems and require separate 
analysis for each V. 

Finite Element Formulation 

Now specifically define A as a region with boundary dA 
and in the immediate vicinity of V. Two examples are depicted 
in Fig. 1. In this section, a hybrid FE is derived to structurally 
model the region A. Stress and displacement fields derived in 
the preceding section are cast into an FE formulation using a 
variational principle. This principle enforces continuity of 
analytic and polynomial displacement fields on dA in an 
aproximate manner. The order of the polynomial on dA is 
chosen to coincide with the order of the assumed fields in the 
conventional FE's that surround the hybrid element. Since 
these elements model the remainder of the structure, both 
finite domains and complex loading conditions can be con
sidered. 

The author assumed F(f) required in equation (6) as either a 
truncated Laurent expansion (unit circle mappings) or a 
truncated Taylor series expansion about f0. a point on the real 
axis (real axis mappings). Substitution of these expansions 
into equation (6) yields: 

Wi> = £ Iff/tti-foy) 

«fc) = E idjB^-^y+ajC^-^y} 

where bj and Cj 

(7) 

are real num-The constants a,- = bj + icj 
bers, and n and m are integers. For unit circle mappings, h = 
-j and f0 = 0. For real axis mappings, h = j and m = 0. 

Assumed fields for [u] and [a] in A were obtained by 
substituting equations (7) and (5) into equations (3) and (4). 
Thus, 

[u}=[U][j3} 

[<x)=[S](/3) 

- C0y + u0 

C0x + v0 

(8) 

(9) 

where ( 0 ) r = [bm, cm, bm + u c m + 1 , . . . , b„, c„]. In 
general, they = 0 terms (b0, c0) can be excluded from the 
summations of equation (7). These terms contribute to rigid 
body motion only and can be included in u0 and v0. The 
author derived the following components for the real matrices 
[C/]and[S]. 

U(\,k) 

U(l,k+\) 

U(2,k) 

U(2,k+l) 

S(r,k) --

S(r,k+1) --

- 2Re{p^\+p2(C^2+B^h
2)} 

= 2 / m ( - p , r y i + P 2 ( - C f i + - B H ) ) 
= 2Re[q^i + q2(C^+B^2)) (10) 

= 2Im[-q1!;i + q2(-Cti+Bth
2)} 

(-ly^QMRels^rr'/uKti) 

+ s2-\hB?tl/J + C?i-l)/uitt2)]) (11) 

(-ly-'.o/H/mi-.yr'rl-'/w/a-,) 
+ s2~' (hBS t~l/j-Ct i~' VcoKfc)]) 

where Im denotes the imaginary part, k = 2(J - m) + 1, r = 
1,2,3, andy 9* 0. (If m<0 andy>0 , k = 2<j-m)-L) The 
expansions chosen for F(f) are analytic on r f and also 
generate analytic functions (j>(h) and \Kfo)- Therefore, the 
stress and displacement fields of equations (8)-(ll) satisfy 
both stress-free conditions on T and all governing elasticity 
equations in A. 

The author formulated the stiffness matrix of the hybrid 
element using a variational principle, ir, which allows in
compatible boundary displacements [40-42]. 

, r = j ^ (la)T[L][u}-~ {o}T[D][o})dA 

A, T]T([u}-{u\)ds- I [T}T[u}ds (12) 

The matrix [L] is defined by the strain-displacement relations 
( e) = [L][u], where [ e) T = [eyy exy exx]. The tractions [ T)_T 

= [Tx Ty] and Sa is the portion of dA in which tractions ( f) 
are prescribed. When [ f] = (0) , equation (12) reduces to a 
form of the Hellinger-Reissner principle [42]. The boundary 
displacements (u] and tractions ( T] are defined only on dA 
and can be chosen independent of («) and [a] which are 
defined over A. The Euler equations for w are [40]: 

in A: 

ondA: 

onS„ 

[L]{u} =[£>]( a] 

°jk,k = 0 

Tj = ajkvk 

[u} = {u) 

[T) = {T] 

(13) 

(14) 

(15) 

(16) 

(17) 

where vj (j=l ,2) are the direction cosines of the normal to 
dA. The assumed fields for [it] and [a], i.e., equations (8) 
and (9), satisfy equations (13) and (14) identically. For this 
case, by Green's theorm: 

Liff} r[D][a)dA-. 

= -M 
2 JdA 

TL'" "[L][u]dA 

T)T{u]ds 

Now ir becomes 

*=\SA
[T]T({a]-hu])ds-\s„{T]T[*]ds 

(18) 

(19) 

Hybrid elements for modeling circular fillets [43], V-
notches [44], and general notch shapes [45] in isotropic 
materials have been formulated using equation (19). Schnack 
and Wolf [45] use stress functions with stress decay 
characteristic of notches in development of triangular hybrid 
elements. This approach allows arbitrarily shaped notches to 
be modeled and was applied in a stress optimization technique 
[46]. The approaches suggested in [43-45] (as well as an early 
approach by Rao et al. [47]) require eigenfunctions for ex
pansions of stress and displacement. Calculation of eigen
functions for anisotropic materials containing discontinuities 
is difficult. The complex variable approach of this paper, on 
the other hand, readily satisfies both governing differential 
equations and stress-free conditions on T through assumed 
friction analyticity and conformal mapping. 

In modeling cracks, Tong et al. [40, 41] introduce con-
formal mapping as a technique to induce the proper crack tip 
singularity. However, as illustrated in both analytic [7, 8] and 
MMC [35, 36] approaches, this technique is substantially 
more powerful. Geometries, for which singularities do not 
exist or are unknown, can be modeled. Both rounded and 
sharp corners can be considered. Thus, an important con-
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tribution of the present paper is generalization of a complex 
variable, hybrid/FE technique to problems involving 
dicontinuities of diverse shapes. Clearly, the anisotropic crack 
element [41] is a special case of the present formulation. 

To finish the FE formulation, fields must be assumed for 
[T] and [u] on dA. The tractions (T) are assumed as to 
satisfy equation (15), i.e., 

T]=[R][f3) where [R] = 
0 Vy VX 

Vy Vx 0 
[SI (20) 

The boundary displacement field (u) is interpolated from the 
nodal displacement on dA, [q], i.e., 

[u]=[L][g] (21) 

The polynomial form of [L] depends on the type of 
displacement-based FE that surrounds region A. 

Finally, consider the case when { T} = 0 . Self-equilibrated 
loadings were considered in [40]. Taking C0 = u0 = v0 = Oin 
equation (8) and then substituting equations (8), (9), (20), and 
(21) into equation (19) yields: 

where 

m •I, 

w={p}T[G][q} 

[R]T[U]ds and 

•j U3}T[H]{I3) (22) 

lG]4 lR]T[L]ds (23) 

Minimization of -w in the usual manner determines the relation 
between ((3] and [q], i.e., 

{P)=[H]-i[G][q} (24) 

The stiffness matrix for the hybrid element, [k], is now 
computed by substitution of equation (24) into equation (22). 

\q)T[k]{q] where [*] - [G] T[H] " ' [G] (25) 

Thus, calculation of [k] involves evaluating two-line in
tegrals along dA - T. (Neither integration nor definition of 
[u] is required along T because [R] = [0] on T.) Gauss 
quadrature was used for these integrations. 

It is important to note that of the five Euler equations 
(equations (13)-(17)) associated with the variational principle 
of equation (12), only equation (16) has not been satisfied in 
the formulation. Thus, the coefficients {j3] are determined as 
to satisfy continuity of analytic and FE displacements in an 
approximate manner on dA - V. Numerical examples will 
show that accurate stresses can be calculated efficiently on F 
in spite of this approximation. 

Numerical Examples 

The stiffness matrix [k] defined in equation (25) is form
ulated in terms of nodal displacements [q] on the boundary 
dA - T. The hybrid element, therefore, can be readily in
serted into existing FE programs. The author added the 
element to a program in the literature [48] he had previously 
modified [49]. A listing of the hybrid element subroutines is 
available upon request. All computing was done in double 
precision on a Sperry 1100/82 at the University of Wisconsin-
Madison. 

Three numerical examples are presented using an elliptical 
void mapping function. A circular fillet mapping function is 
used for a final example. The generality of the presented 
formulation is illustrated by the ease of modeling different 
discontinuities. For a given T, only the derivative and inverse 

S\E_ 
Wc-\V ^SVWv 

Fig. 2 Finite element mesh, linear elements 

Table 1 Elliptical void; a = 0.25 cm 
GP/side; yellow poplar elastic properties 

m 
Linear 
Quadratic 
Cubic 
Elasticity [7] 

m 

- 3 
- 7 

- 1 1 

n 

3 
7 

11 

CPU 
(sec) 

0.09 
.18 
.29 

, b = 

OQ/T 

3.1955 
3.1960 
3.1953 
3.1961 

0.125 cm; 7 

aP/T 

-0.30301 
- .30326 
-.30313 
-.30332 

ofuj (fy) must be defined. Specification of Laurent or Taylor 
expansions is achieved directly by the value of m input. When 
specifying m and «, the number of terms must exceed the 
number of components in (q\ minus three. This is required to 
ensure [k] has the correct rank [40]. 

Elastic properties typical for yellow-poplar at 11 percent 
moisture content were used in most of the examples. These 
properties are [50]:Ex = 1.034 x 107kPa(1.5 x 10 6psi) ,£ , 
= 0.092 Ex, Gxy = 0.075 Ex, and vxy = 0.318. Roots of 
equation (2) associated with these properties are «, = 
0.960818 /' and s2 = 3.431350 /. Orthotropic properties were 
chosen to facilitate comparison with published elasticity 
results and to enable use of symmetry in modeling. In other 
examples, the author found no difference in convergence 
characteristics of results using anisotropic rather than or
thotropic properties. 

Elliptical Mapping Function. The following conformal 
mapping function maps the unit circle in the f plane onto an 
ellipse in the z plane: 

z = a,(f) = (fl + 6)f/2 + ( a - f t ) r 1 / 2 (26) 

where the constants a and b are the elliptical axes in the x and 
y directions, respectively. Transformations from the £, to Zj 
planes (J = 1,2) were derived by substitution of equation (26) 
into equation (5): 

zj = UJUJ) = (a- isjbUj/2 + (a + iSjb)^' /2 (27) 

The inverses of equation (27) were found to be: 

(28) 

1. 
$ = [zj- V ^ V T ^ J F ) ) /{a - isjb) 

The branch of the square root is chosen so that I fy I 
Equations (27) and (28) agree with Savin's results [7]. 

The author analyzed a uniaxially loaded, orthotropic sheet 
(40 x 40 cm) with an elliptical void. Symmetry was enforced 
in the hybrid element by taking only real and odd values of fly-
in the summations. Structural models were developed using a 
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Table 2 Elliptical void; a = 0.25 cm, b = 0.125 cm; linear 
elements; 7 GP/side; yellow-poplar elastic properties 

°Q /T op/T 

- 3 
- 3 
- 5 
- 5 
- 7 
- 9 

- 1 1 
- 2 1 

Table 3 

3 
5 
3 
5 
7 
9 

11 
21 

Elliptical void; a -

3.196 
3.194 
3.194 
3.194 
3.192 
3.190 
3.191 
3.190 

= 0.05147 cm, b --

-0.3030 
- .3028 
- .3028 
- .3029 
- .3024 
- .3023 
- .3022 
- .3021 

= 0.25 cm; 7 

(«1 
Linear 
Quadratic 
Cubic 
Elasticity [7] 

m 

- 3 
- 7 

- 1 1 

n 

3 
7 

11 

CPU 
(sec) 

0.09 
.18 
.28 

OQ/T 

10.710 
10.716 
10.716 
10.714 

Table 4 Circular void; 
elastic properties 

Element 

Elliptical 
Elliptical 
Elliptical 
Fillet 

m 

- 1 1 
- 2 1 
- 3 1 

1 

n 

11 
21 
31 
12 

r = 2 cm; Cubic [u}\ yellow-poplar 

Gauss points 
per side 

8 
8 
8 

40 

OQ/T 

5.7836 
5.7839 
5.7846 
5.775 

op/T 

-0.30573 
-.31784 
-.31897 
- .3434 

hybrid element together with only eight displacement 
elements. Results using the linear, quadratic, and cubic 
isoparametric quadrilateral elements [51] follow. The model 
with linear elements is shown in Fig. 2. 

a = 0.25 cm and b = 0.125 cm. A 40- x 40-cm sheet with a 
void o = 0.25 cm and b = 0.125 cm approximates an ellip
tical void in an infinite sheet. A closed form elasticity solution 
exists for the idealized problem [7]. In Table 1, numeric and 
analytic stresses are compared at points P (6 = 0 deg) and Q (6 
= 90 deg) (see Fig. 2). Stress concentration factors calculated 
by the hybrid element differ from the elasticity results by less 
than 0.02, 0.007, and 0.03 percent for the three different {u]. 
Examples using smaller voids showed even closer agreement, 
indicating a small finite sheet effect. Remarkably, these 
results were obtained using close to the minimum number of 
terms required in the Laurent expansions (see Table 1). The 
author found hybrid stresses converged to five decimal places 
when seven Gauss points (GP) per side were used to integrate 
equation (23). Thus, integration ease combined with the small 
number of expansion terms provided efficient as well as 
accurate solutions. The efficiency is evidenced by the com
puter times (CPU) required to compute [k] indicated in Table 
1. 

Analytic and numeric stresses computed on T are compared 
in Fig. 3. The hybrid element results use linear elements (Fig. 
2) with m = - 3 and n = 3. The agreement is excellent, 
especially since the Laurent expansion contained only four 
terms. For all points on T, the unequality I <J2 \/T< 10"16 was 
satisfied indicating free-surface stress conditions were 
achieved. 

Stresses computed for various values of m and n with a 
linear («) are compared in Table 2. The stability shown 

3.00 

2.50 

2.00 

1.50 

1.00 

.50 

.00 

o- 0.25 cm-, b = O.I25cm 

ELLIPTICAL HYBRID ELEMENT 

[ i > ELASTICITY [7] 

0 20 30 40 50 60 70 80 90 

Fig. 3 Principal stress ratio on elliptical void 

b=2.0cm 

ELLIPTICAL HYBRID 
ELEMENT 

a FE NODAL DISPLACEMENT 

3.0 4.0 2.0 2.5 
y(cm) 

Fig. 4 Displacement u on line segment x = 4.0 cm and 0 s y < 4.0 cm 

6.0 

5.0 

4.0 

. 3.0 

2.0 

1.0 

. 0 ; 

a • b = 2.0 cm 

ELLIPTICAL HYBRID ELEMENT 
x x x FILLET HYBRID ELEMENT 

fcfc*t±r& 
10 

Fig. 5 Principal stress ratio on circular void. 

indicates again that accurate solutions can be obtained using 
few terms. From other numerical tests, the author found this 
type of stability was attained as long as the order of {it} 
approximated the actual displacements on dA adequately. 

a = 0.05147 cm and 6 = 0.25 cm. Schnack and Wolf [45] 
modeled a narrow elliptical cutout in a large, uniaxially-
loaded, isotropic sheet. The authors chose a rather severe 
elliptical geometry, i.e., the ratio of major elliptical axis to 
minimum radius of curvature was taken as 23.592. This 
problem was used to compare various numerical techniques: 
integral equation method, conventional FE method, a 
combined integral equation and FE method, and the method 
previously discussed using triangular notch elements. 

I modeled this problem with the mesh of Fig. 2 taking 
a = 0.05147 cm and i> = 0.25 cm. Since the formulation 
presented in this paper is anisotropic, near isotropic 
properties (Ex = 1.0 kPa, Ey = 1.00001 Ex, Gxy = 0.40 Ex, and 
vxy=0.25) were used for this example. Results are presented 
in Table 3. The small radius of curvature at point Q (0.0106 
cm) causes a large stress gradient, i.e., a SCF of 10.71. The 
results from the elliptical hybrid element differ from the 
elasticity result [7] by only 0.05, 0.02, and 0.02 percent for the 
three different (u}. The small radius of curvature at point Q 
caused no difficulty in stress calculations. 

In the numerical comparison, Schnack and Wolf [45] 
reported the triangular notch elements yielded the most ac
curate and efficient solution. The computed SCF was 10.7, 
identical to results in Table 3 to three decimal places. The 
authors noted that this calculation took less than 60 sec CPU 
(LRZ Munchen, TR440). Computing times for other 
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numerical techniques ranged from 60-2400 sec with less 
accuracy for the most part. It is difficult to compare CPU 
times on different computers. The CPU times reported in 
reference [45], however, are two to four orders of magnitude 
greater than those in Table 3. 

a = b = 2.0 cm. In this example, the void dimensions (a = 
b = 2.0 cm) were chosen to be the same order as the 
dimensions of the hybrid element. Yellow-poplar elastic 
properties were used. Computed stresses cannot be compared 
to Savin's solution [7] due to the finite domain. However, 
results will be compared to a circular fillet solution in the next 
section. A structural model was constructed using eight 12-
node cubic elements (dimensions of Fig. 2) together with the 
hybrid element. Stress results for various values of m and n 
are shown in Table 4. Integration with eight GP/side provided 
convergence to five decimal places. Excellent stability in stress 
computation is evident, especially for the SCF. This degree of 
stability was not attained with either the linear or quadratic 
elements. The reason is apparent when [u] and [u] are 
compared on dA. For example, in Fig. 4, u and u are com
pared on the segment x = 4 cm and 0 < y < 4 cm. It is clear 
that neither the linear nor quadratic u could adequately 
approximate u. In practice, however, the segment can easily 
be broken into two or more segments with satisfactory results 
(using more than eight FE's). 

Circular Fillet Mapping Function. The following con-
formal mapping function maps the real axis in the f plane 
onto a circular fillet in the z plane [35]: 

z = w(» = ipe-' r (29) 
where the constant p is the fillet radius. Substitution into 
equation (5) yields: 

zj = ip\ (1 - iSj)e-«j - (1 + is^j) 12 (30) 

To the author's knowledge, these transformations have not 
appeared in the literature. The inverses of equation (30) are 
defined by: 

e-'ty = [zj-4zj -P
2{\+sj)}/{ip{\-isj)} (31) 

The branch of the square root is chosen so that 

Im f ; > 0 , i.e., le-'ij I>1 

The numerical example chosen for the fillet coincides with 
the previous example, i.e., p = 2.0 cm and the FE mesh of Fig. 
2. For the fillet model, {u] must be defined and equation (23) 
integrated on four sides rather than two (see Fig. 1(b)). Cubic 
fields for [u] were assumed on the four sides. Lower order 
polynomials could be used, but a new mesh with more 
displacement FE's would be required as mentioned 
previously. Symmetry in the fillet element was imposed by 
setting the appropriate FE nodes equal to zero. Since 13 nodes 
were used in dA, 23 terms were required in the Taylor ex
pansion. For the following results, 24 terms were used (m = 1, 
n = 12). 

Stresses at points P and Q computed by the two hybrid 
elements are compared in Table 4. Stresses along V are 
compared in Fig. 5. The agreement is remarkable, especially 
since the approximation on dA extends to T for the fillet. This 
fact necessitates greater computational effort to integrate 
equations (23) compared to the elliptical element. Results in 
Table 4 are for 40 GP/side. Clearly, a selective integration 
technique would improve efficiency. 

For both the elliptical and fillet hybrid elements, the author 
found similar accuracy using three different sets of or
thotopic properties. Also, structural models were con
structed for stepped, flat tension bars with shoulder fillets.2 

Computed SCF (using near isotropic properties) were 
compared with published photoelasticity data (Fig. 65 in 
reference [1]) to examine the accuracy of the fillet element as 

the fillet radius was varied. Models were constructed with nine 
different ratios of fillet radius to minimum bar width ranging 
from 0.08125 to 0.25. Computed results differed from ex
perimental results by 0.3 percent-4.5 percent.2 Mean dif
ference was only 2.2 percent. 

Summary and Conclusions 

A hybrid/FE method was presented to calculate stresses or 
stress intensity factors associated with geometric discon
tinuities in plane-loaded anisotropic materials. A hybrid 
element was formulated in terms of an arbitrary conformal 
mapping function. Thus, the element can structurally model 
members containing notches, fillets, or cutouts of diverse 
shapes. 

Analysis of a small elliptical void in an orthotropic sheet 
indicated that accurate and efficient results were obtained 
with the hybrid element. Using only a few terms in the series 
expansions, excellent agreement was obtained with an 
elasticity solution. Moreover, computed stresses were in
sensitive to varying the number of terms chosen. 

A narrow elliptical cutout in a large isotropic sheet was 
modeled using near isotropic material properties. Results 
from the hybrid element agreed well with both an elasticity 
solution and other numerical techniques compared in 
reference [45]. The small radius of curvature at the critical 
stress location caused no difficulty in stress calculations. 

Structural models of an orthotropic sheet with a circular 
hole were developed with elliptical void and circular fillet 
hybrid elements. Computed stresses showed good agreement. 
Computed stresses were insensitive to the number of ex
pansion terms chosen as long as the polynomial field on the 
element boundary was properly chosen. Results from both 
mapping functions indicated that accurate critical stresses can 
be obtained using a hybrid element with a coarse 
displacement element mesh. Using the proposed method, 
problems involving interaction of two or more holes or other 
discontinuities can be efficiently solved. 
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A P P E N D I X 

Constants in equation (4): 
pk m Dus

2
k-Dl3sk+Di2 (*=1,2) 

Qk = (.Dl2s
2
k-D23sk+D22)/sk (*=1,2) 

Constants in equation (6): 

B = (s2-si)/(.s2-s2) 

C = (.s2-si)/(s2-s2) 
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Indentation of a Penny-Shaped 
Crack by an Oblate Spheroidal 
Rigid Inclusion in a Transversely 
Isotropic Medium 
The stress distribution produced by the identation of a penny-shaped crack by an 
oblate smooth spheroidal rigid inclusion in a transversely isotropic medium is in
vestigated using the method ofHankel transforms. This three-part mixed boundary 
value problem is solved using the techniques of triple integral equations. The 
normal contact stress between the crack surface and the indenter is written as the 
product of the associated half-space contact stress and a nondimensional crack-
effect correction function. An exact expression for the stress-intensity is obtained as 
the product of a dimensional quantity and a nondimensional function. The curves 
for these nondimensional functions are presented and used to determine the values 
of the normalized stress-intensity factor and the normalized maximum contact 
stress. The stress-intensity factor is shown to be dependent on the material constants 
and increasing with increasing indentation. The stress-intensity factor also increases 
if the radius of curvature of the indenter surface increases. 

Introduction 

Stress distributions for a penny-shaped crack in hexagonal 
aeolotropic crystals have been investigated in terms of two 
harmonic functions [1]. The approach of potential functions 
was used to solve the problem of spherical inclusions in a 
transversely isotropic material under pure shear [2]. The 
entire surface of the inclusion was in contact with the 
surrounding matrix material. Numerical results were given for 
a number of hexagonal crystals that were characterized as 
being transversely isotropic [2]. Many fiber-reinforced 
composite materials and platelet systems were also charac
terized as transversely isotropic media, which have five elastic 
constants [3]. 

The present work studies the indentation of a penny-shaped 
crack by a thin oblate spheroidal rigid inclusion in a trans
versely isotropic medium (Fig. 1). Only the inner part of the 
crack surface is subjected to the indentation of the inclusion, 
while the outer crack surface is free from stresses. The method 
of Hankel transforms is used to satisfy the equilibrium 
equations and the boundary conditions, which have three 
different parts. The solutions are obtained using the 
techniques of triple integral equations [4]. The normal contact 
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SYMMETRICAL INCLUSION 
CRACK SURFACE 

Fig. 1 Coordinates and configuration 

stress between the indenter and the crack surface, as well as 
the stress-intensity factor, are obtained as the products of 
dimensional quantities and nondimensional functions. The 
values of the nondimensional functions are calculated and 
used to determine the values of the normalized stress-intensity 
factor and the maximum normal contact stress for various 
values of nondimensional parameters. 

Formal Solution 

A penny-shaped crack with radius / is located inside a 
transversely isotropic medium. The surfaces of the crack are 
normal to the axis of symmetry of the material. The traction-
free surfaces of the crack are indented by a smooth oblate 
spheroidal rigid inclusion (Fig. 1). The inner central portion 
of the crack surfaces is in contact with the inclusion body 
while the outer portion maintains the stress-free conditions. 
The problem has symmetrical properties with respect to the 
plane containing the penny-shaped crack. In cylindrical 
coordinates (r, d, z) with z normal to the crack surfaces, the 
displacement has only two components ur and uz, and the 
mixed boundary conditions at z = 0 can be written as: 
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f H 

ar;: = 0, r > 0 

w{r), 0< / -< / 

.=0 , a<r<l 

(1) 

(2) 

(3) 
The crack-shape function w(r) in equation (2) is identical to 
the shape of the rigid indenter inside the contact area with 
radius equal to a, but is unknown outside the contact area. 
The unknown portion of the crack-shape function and the 
unknown contact radius a are to be determined later using the 
condition of vanishing normal stress in equation (3) and the 
finiteness of the contact stresses between the indenter and the 
crack surfaces. 

The stress-strain relationships for a transversely isotropic 
medium can be written in cylindrical coordinates as follows 
[1,5]: 

Orr = cuerr + ci2ew + cnezz (4) 

<% = c\2err + cueee + cnezz 

°zz = Cnerr+ciieeO+Cliezz 
an — c44erz> <Jez~CA4eSz 

Ore = l / 2 ( c n - c 1 2 ) e r t 

The foregoing strains e,y can be first written in terms of the 
displacements [1,5] and then substituted into the preceding 
equations to obtain the stress-displacement relationships. The 
relationships are finally used in the equilibrium equations [1, 
5] to form a system of partial differential equations for the 
displacements. The Hankel transforms are applied on the 
variable r of the partial differential equations, and the 
transformed equations in terms of the parameters are ob
tained as follows: 

d2ur 2 du° 
14 "T~2 C H 5 Ur ~"(C13 +C44)S—- — 0 

dz dz 

cn~rr - c 4 4 S 2 « " + ( c i 3 + c 4 4 ) s — =0 
dz oz 

(5) 

(6) 

where ul
r is the first-order Hankel transform of ur, and uz is 

the zeroth-order Hankel transform of uz. To solve the 
foregoing two equations, the transformed displacements are 
chosen in the following forms: 

ur=Ae-*z and u0
z=Be~^z (7) 

Equations (5) and (6) are satisfied if the parameter satisfies 
the following characteristic equation: 

(c44X
2 -c u)(c 3 3X 2 - c 4 4 ) + (c13 +c44)2X2 =0 (8) 

The equation is a quadratic equation for X2 and has two roots 
X2 and X2. The roots are either both real or a pair of complex 
conjugates, depending on the values of the material constants. 
Both types of root give physically meaningful results [1]. For 
the first root X!, the constants in equation (7) are denoted as 
Ay and £ , . Similarly, A2 and B2 are for the second root X2. 
For X[, equation (6) gives the following relationship: 

>M^l=(C33Xl-C44)5l/(Cl3+C44) (9) 

Similar relationships hold foiA2, B2, and X2. 
To satisfy the stress boundary conditions in equations (1) 

and (3), the transformed forms of the stresses can be written 
from equation (1) as follows: 

a\z = cM(dul/dz-su°z) (10) 

a°z = cn(.sur) + ci3du°z/dz (11) 

In terms of the transformed displacements in equation (7), the 
relationship in equation (9) and its counterpart equation for 
X2, the stress boundary condition in equation (1) gives the 
following relationship: 

Bl = -(C33^+C13)52/(C33X2+C,3) (12) 

In terms of equations (7) and (12), the displacement boundary 
in equation (2) gives 

B2 = (C33X
2+CI3)M'0/(X?-X2

2)C33 (13) 

0 = f w(X)X/0(\s')rfX w" = (14) 

If equations (7), (9), and (12)-(14) are substituted into 
equation (11), the transformed normal stress is obtained at 
z = 0as 

K = 

<J°ZZ=-KSW° 

C44(c13+X2C33)(C13+Xic33) 

(15) 

(16) 
C33(Cl3+C44)(^l+^2)^lX2 

The constant K is a real-valued function of the elastic con
stants and the characteristics roots. For an isotropic material, 
K reduces to /x/(l - v), where fi is the shear modulus and v is 
Poisson's ratio. 

Contact Stress 

The indentation of the crack surfaces by the inclusion body 
produces normal contact stress inside the contact area be
tween the indenter and the crack surfaces. To solve for the 
contact stress, a function of the transformed parameter s is 
introduced as follows: 

x(s)=Kw°s2 (17) 

The transformed normal stress in equation (15) can be written 
in terms of x, a f ld the Hankel inversion of the resulting 
equation gives the expressions for the normal stress at z = 0 as 
follows: 

i oo 

0 x(s)J0(sr)ds = 

' ff[(r) 0 < r < a 

0, «</ •< / (18) 

<72(r), /</•<<» 

The normal contact stress in the contact area is defined in the 
foregoing as cr, (r). The normal stress outside the crack surface 
is described as a2(r). The three-part stress condition on the 
right-hand side of equation (18) leads to triple integral 
equations that are solved for the unknown functions a{ (/•) and 
o2(r), using the techniques similar to those presented in 
reference [4]. The Hankel inversion of equation (18) gives the 
following expression: 

X(s) = - * [ j j ffi(X)X/0(Xs) + { "«72(X)W0(ta)ds] (19) 

To establish a system of integral equations for a, and a2, 
the shape of the axisymmetricai indenter inside the contact 
area is described as g(r). The normal displacements in 
equation (2) are calculated in terms of equations (7), (17), and 
(19). The portions of the displacement that have known values 
at this stage of calculations are written as 

j ° a, \L(r,\)d\+ j"a2XL(r,X)ofX= -g(r)K, 0 < r < a (20) 

r<T,XL(r,X)rfX+f cr2XL(/-,X)dX = 0, 

The function L(r,X) is defined in the Appendix. If equation 
04-2) for L(r,X) in the Appendix is substituted into the first 
integral on the left-hand side of equation (20), the integral is 
integrated once by changing the order of integrations into the 
following form: 

j o ' (r2 -x2)-'AN(x)dx= - ir/2[^g(/-)+ ( °°ff2XLdx] (22) 

/<r<oo (21) 
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N(x)=\ (\2-x2)-'/2\aid\ (23) 

If equation (22) is recognized as the Abel transform of N(x), 
the inverse Abel transfrom of equation (22) [4] is integrated 
using equation (A-2) into the following expression: 

N(x)= -K--\\x2-t2)-*tgdt- [ "cr2X(X2 -x2YVld\ (24) 

Equation (23) is now recognized as the Abel transform of \ox. 
The inverse Abel transform is calculated in terms of equation 
(24). In the process of calculations, the first term on the right-
hand side of equation (24) is first integrated by parts and then 
differentiated with respect to x. Furthermore, the identity in 
equation (.4-4) [4] is used in the calculations of the second 
term on the right-hand side of equation (24). The results of the 
inversion calculations give the expression for the contact 
stress as follows: 

a,(/•) = aH-(a2 -r2)~ 'Arf/2jg(0) + af "Q (a2 -12)~v'g'dt 

+ l/K^wtf-a2)*^2 -r2)-1^] (25) 

oH = *K/2\ (x2-r j;< 
2)-[/ldx 

dxJo I xg'{x2-t2)-Vldt (26) 

The last term in equation (25) vanishes if the radius of the 
crack / approaches infinity. Under this condition, equation 
(26) can be split into an equation for determining the contact 
stress plus an auxiliary equation for the contact problem of an 
elastic half space [6]. The last term in the foregoing equation 
represents the effects of the crack on the distribution of the 
contact stress ai. The effects are incorporated in the next 
section in the form of an integral equation. 

Stress-Intensity Factor 

The normal stress outside the crack surface o2 is determined 
by bringing it out from the integral in equation (21). If the 
operations defined in equation (A-5) are operated over the 
variable r in equation (21), the equation can then be integrated 
over sine functions [7]. After the calculations, equation (21) 
becomes 

\\o2\{r2 -X2)-»dX = - j j a,X(r2 - \2y'Ad\ (27) 

If equation (27) is recognized as the Abel transform of a2\ 
the inverse Abel transform of equation (27) yields 

a2(r)=-(r2-l2)-'/'2/ r\\lKP- t2)Vl(r2-t2yldt (28) 

The identity defined in equation {A -6) is used in obtaining the 
foregoing result. The stress o2 has square-root singularity at 
the crack tip r=l. If a2 in equation (28) is substituted into 
equation (25), the resulting equation may become an integral 
equation for determining the contact stress or,. However, 
there is an apparent singularity at r = a. This phenomenon is 
similar to that occurring in a half-space contact problem [6]. 
From a physical consideration, the contact stress should be 
finite for a smooth indenter whose contact surface does not 
have any abrupt change in slope [6]. If the value of r is set 
equal to a in equation (25), the requirement for the vanishing 
of the singular term yields the following auxiliary equation 
[6]: 

(Q) fg ag'iOdt = 2_ J_ r - ydr, 
8( ' Jo V ^ T ? „- K J/ Vj/2-a2Vi/2-/2 

i " a^-t2)1' 
dt (29) 
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Fig. 2 Normalized normal contact stress 
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Fig. 3 Nondimensional function ka(all) and the correction factor for 
the normal contact stress at the contact center f(0) 
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Fig. 4 Nondimensional function for the stress-intensity factor G(a/f) 

In terms of equations (28) and (29), an integral equation is 
obtained from equation (25) as follows: 

o\=oH~ •Va2 
• i ; 

{ri2-a2)-Vtt]d-q 

tf-l2YA{v2-r2) 

<sxt{!2-t2y< 

v
2-t2 dt (30) 

The associated half-space contact stress aH is known if the 
indenter shape g(r) is specified [6]. Equation (30) is a 
Fredholm integral equation of the second kind, whose 
solution determines the contact stress at. 

If the contact surface of the rigid inclusion is spherical in 
shape with radius R, the shape of the indentation can be 
written as it was in reference [6] 

g(r) = a-r2/2R (31) 
The condition required for equation (31) is that the radius of 
the contact area is small compared to the radius of the contact 
surface of the indenter. The condition is indeed satisfied in 
usual stress ranges [8, 9]. This equation also applies for an 
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oblate spheroid with semiaxes a and /3. In this case, the radius 
of curvature of the spheroid at the center of the contact area is 
R = $2/a, a being the minor semiaxis along the z-axis. If 
equation (31) is substituted into equation (26), the associated 
half-space contact stress is found after integrations as 

aH=-aM{\-r2/a2)'A; aM = 4Ka/wR (32) 

The maximum value of aH is equal to oM which occurs at 
r = 0. If the contact stress is written as <J{ =oHf(r) and then 
substituted into equation (30), a factor can be factored out 
and the resulting equation becomes an integral equation for 
the nondimensional contact stress correction function /(/•), 
due to the effects of the crack. The use of the trans
formations, r = ap, t = a\, r]2=(l2-a2) cosh2 6 +a2, further 
transforms equation (30) into the following nondimensional 
form: 

/ ( a p ) = l - [ /(«X)M(p,X)tfX 
Jo 

(33) Fig. 7 Normalized normal stress outside the crack tip 

M= ioo 

o 

\(i - \2yA(i2/a2-\2yAdd 

l(l2/a2 - l)cosh20 + (l -p2)W2/a2 - l)cosh20 +1 - X2] 
(34) 

The correction function f{f) is solved numerically from the 
Fredholm integral equation of the second kind in equation 
(33) by the method of successive approximations as was used 
in the earlier work [6]. Some typical normalized normal 
contact stresses are shown in Fig. 2 as a function of the 
nondimensional ratio a/l. The maximum value of the normal 
contact stress ffimax occurs at the contact center r = 0. 

If equations (30) and (31) are substituted into equation (29), 
the maximum indentation a can be calculated, using the 
transformations similar to those for equation (33). The result 
is written as 

a/i=(l/R)ka(.a/l) (35) 

ka = a2/I2 U - 8/TT2 f °°dd \ F(\a/l) Ul2/a2 - l)cosh20 

+ 1-X: •]-*] (36) 

F= (1 - \2)'Af(a\)\(l2/a2 - X2)'/2 (37) 
The nondimensional function ka is calculated numerically 
and shown in Fig. 3 as a function of a/1. 

The stress intensity factor is calculated from equation (28) 
in terms of the solution for ax as follows: 

K, = \\m [2Tr(r-r)Y/2o2=2(jMG(a/[)(,l/Tr)'A (38) 

G(a/l) = a/l\Q F(X,a//)[/2/a2 -X2]"'dX (39) 

Numerical results for the nondimensional function G are 
shown graphically in Fig. 4. 

The behaviors of the stress-intensity factor and the 
maximum normal stresses aM and ffimax can be studied using 
the nondimensional curves in Figs. 3 and 4. The value aM in 
equation (32) is proportional to a/R. Consequently, K/ in 
equation (38) and ffimax are, respectively, proportional to 
aG/R and af(0)/R. For given values of the nondimensional 
ratios a/1 and l/R, the value ka is determined from equation 
(35), which in turn determines a/l from Fig. 3. The deter
mined value of a/l multiplied by the given value of l/R gives 
the value a/R. If a/R is multiplied by the values of/(0) in Fig. 
3 and G in Fig. 4 at the determined value of a/l, the products 
af(Q)/R and aG/i? are obtained and shown in Figs. 5 and 6, 
respectively. Using the data involved in earlier works [8, 9] as 
guidelines, the values of a/l and l/R in Figs. 5 and 6 are 
chosen in such a way that the maximum normal stresses are in 
usual stress ranges. 

The normal stress outside the crack tip is calculated from 
equation (28) and written as: 
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a2 = oMG{r/l, a/l) (40) 

G = 2(r2/l2-l)-Vla/lTr\ F{\,a/l)[r2/a2-\2Yld\ (41) 

The nondimensional function G is calculated numerically and 
shown graphically for various values of a/l in Fig. 7. 

Discussion and Conclusions 

The indentation of a penny-shaped crack by an oblate 
smooth spheroidal rigid inclusion in a transversely isotropic 
medium is investigated using the method of Hankel trans
forms. The problem has the character of a three-part mixed 
boundary value problem and is solved using the techniques of 
a triple integral equation [4]. 

The normal contact stress between the crack surface and the 
indenter is written as the product of the associated half-space 
contact stress and a nondimensional crack-effect correction 
function. The nondimensional correction function is solved 
numerically from an integral equation by the method of 
successive approximations. The magnitude of the normal 
contact stress in the contact area is shown to be lower than the 
corresponding value of the associated half-space contact 
stress in Fig. 2. 

The ratio of the maximum indentation to the crack radius / 
is written as the product of the ratio of / to the radius of the 
curvature of the indenter surface R and a nondimensional 
function ka in equation (35). The calculated values of ka are 
shown graphically in Fig. 3 as a function of the ratio of the 
contact radius a to the crack radius /. The curve for ka can be 
used to determine the value of a for given values of /, R, and 
a. Once the value of a has been determined, the maximum 
normal contact stress o-lmax can be calculated using the curve 
for/(0) in Fig. 3. The values for a/R and the normalized <jlmax 
are shown in Fig. 5 as functions of a/l and R/l. It can be seen 
there that both the contact radius and the maximum contact 
stress increase with increasing a if R and / are constant. 

An exact expression for the stress-intensity factor is ob
tained in equation (38) and can be seen to be proportional to 
the constant K in equation (16), which is a real-valued func
tion of the elastic constants and the characteristic roots. The 
constant K reduces to /n/(l - v) for an isotropic material, 
where ix is the shear modulus and v the Poisson ratio. The 
value of the stress-intensity factor can be calculated using the 
nondimensional curve in Fig. 4. The curves for the calculated 
values of the normalized stress-intensity factor are shown in 
Fig. 6 as functions of the ratios R/l and a/l. The value of the 
stress-intensity factor increases if the indentation a or the 
radius of the indenter-surface curvature R increases. The 
normal stress outside the crack tip o2 is also obtained as the 
product of the maximum associated half-space contact stress 
and a nondimensional function. The distributions of the 
normalized normal stress a2 are shown in Fig. 7 as functions 
of a/l and the normalized distance r/l. 
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A P P E N D I X 

L(r,X) = j o J0(sr)J0(Xs)ds (,4-1) 

The preceding integral can be expressed in the following 
two different forms [4]: 

2 p min(N.r) 

L(r,A) = — (X2 -s2)~'A(r2 -s2)- 'Ads (,4-2) 
7T JO 

L{r,\)=~ P (s2-\2)-'A(.s2-r2)-'Ads (A-3) 

-^ f" x{x2 - X2) -'A {t2 -x2y 'A dx 

= - Ml2 - a2) 'A {t2 - X2) ~' (a2 - X2) - * (,4-4) 

— j ^ x(x2 -r 2 )~ 'AJ0^x)dx = -sin($r) (,4-5) 

4- [ x(X2 -x 2 ) ~ 'A (x2 -12) - 'Adx 
oX J / 

= X(/2 -12) 'A (X2 -12) - 'A (X2 -12) -' (,4-6) 
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Creep and Creep Recovery of 
2618-T61 Aluminum Under 
Variable Temperature 
Creep and creep recovery data are reported for pure tension of2618-T61 aluminum 
alloy under variable temperature between 200° C and 230° C. Varying temperature 
experiments involved an abrupt temperature increase and a linearly increasing and 
decreasing temperature at a constant stress of 137.9 MPa {20 ksi). A temperature-
compensated time by Sherby and Dorn was employed to represent the effect of 
temperature. A temperature-history-dependent theory using data from constant 
stress creep and creep recovery together with the apparent activation energy was 
used to predict the creep under variable temperature. The predictions agreed quite 
well with the observed data. The apparent activation energy of this alloy was found 
to be 49,000 cal/mole°K. 

Introduction 
Most creep experiments of metals have been conducted at 

constant stresses and temperatures. But actual creep problems 
of structural members involve much more complex conditions 
such as varying stress and temperature, and gradients in both. 
As the creep behavior of metals is very sensitive to tem
perature as well as stress, and creep-controlling mechanisms 
change with stress and temperature, the proper constitutive 
relations should account for the effects of stress and tem
perature together. Since all the creep parameters are possibly 
affected by temperature, it will not be possible to construct 
one general relation covering the whole range of stress and 
temperature. It is desirable to find the simplest equation 
describing the temperature dependency of creep over a fairly 
narrow temperature range of practical interest. 

In an earlier work by Blass and Findley [1], the creep 
behavior of 2618 aluminum alloy was reported for abrupt 
changes in temperature and combined stress states. In a series 
of works by Findley and Lai [2-4] creep of the same material 
were reported for variable stresses of combined tension and 
torsion at 200°C. A viscous-viscoelastic model was developed 
and extended for variable stresses employing a strain-
hardening theory (SH) for nonrecoverable viscous creep 
components and a modified superposition principle (MSP) 
for recoverable viscoelastic creep components. 

In the present paper, additional experiments on the same lot 
of material are reported for varying temperature. The tem
perature effect was incorporated into the original constitutive 
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relation [2, 3] by replacing the actual time with an integral 
form of temperature-compensated time which was first in
troduced by Sherby and Dorn [5]. Then the behavior under 
variable temperature was predicted from the theory using data 
from tests at constant stress and temperature only. 

Somewhat similar experiments on creep under variable 
temperature were performed by Mark and Findley [6] on a 
plastic for which an integral form of reduced time defined by 
Morland and Lee [7] was employed in the predictions. Creep 
experiments on 0.15 percent carbon steel under step changes 
in temperature during creep at a stress near the yield point 
were reported by Taira, Ohnami, and Sakato [8]. These ex
periments showed a marked difference in behavior between a 
step increase versus a step decrease in temperature. On a 
temperature decrease an "incubation period" of near zero 
creep was reported. 

Materials and Specimens 

An aluminum forging alloy 2618-T61 was employed in 
these experiments. Specimens were taken from the same lot of 
63.5 mm (2.5 in.) diameter forged rod as used in [2-4] and the 
same as specimens D-H in [1]. Specimens were thin-walled 
tubes having outside diameter, wall thickness, and gage length 
of 25.4, 1.52, and 101.6 mm (1.0, 0.060, and 4 in.), respec
tively. A more complete description of material and 
specimens is given in [2]. 

Experimental Apparatus and Procedure 

The combined tension and torsion creep machine used for 
these experiments was described in [9] and briefly in [2]. The 
temperature control and measurement employed was 
described in [1, 2]. The abrupt temperature increase was made 
manually by increasing the set point of a Thermae tem
perature controller. For continuously varying temperature, a 
clock motor and gear train were used to drive the set point of 

816/Vol. 51, DECEMBER 1984 Transactions of the ASME 

Copyright © 1984 by ASME
Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0.28 

0.27 

0.26 

u 0.25 

i— 
in 

0.24 

0.23 

0.22 

0.21 

0.20 

0.06 

.05 

- 0 . 0 H 

0.05 

0.011 

0.03 

0.02 

TIME FOR 

1 
13) 

CREEP (RECOVERY) 

2 
01 

HOURS 
Fig. 1 Creep and creep recovery of 2618-T61 Al under pure tension of 
137.9 MPa (20 ksi) and at 200°C (D1, HI, and HZ), and at 230°C (K-| and 
K2). Use ordinate scale on the left for creep and on the right for creep 
recovery. 

two Thermae temperature controllers at constant rate. One of 
these Thermacs controlled the power to the heating lamp 
inside the specimen, and the other controlled the power to 
both top and bottom end heaters. The function of the heating 
lamp and end heaters were described previously [2]. Chromel-
alumel thermocouples were used for control and chromel-
constantan thermocouples were used for measuring. Stress 
was produced by applying dead weight at the end of a lever. 
The weights were applied by manual control of a jack in less 
than 10 sec. but without shock. For simultaneous temperature 
increase and loading, the temperature was first increased to 
the test temperature just before the load was applied. 
Similarly for continously increasing temperature, the clock 
motor was first started and then the load was applied. The 
time of the start of the test was taken to be the instant at which 
the load was fully applied. The gage length employed was 
measured at room temperature and no correction of gage 
length was made for thermal expansion. 

Experimental Results 

The results of tests D, F, H, K and L are shown in Figs. 1-4. 
The test data D, F, and H were taken from [ 1 ], and tests K and 
L are new. 

Figure 1 shows results of creep and creep recovery tests at 
two different constant temperatures, 200°C (Tests D and H) 
and 230 °C (Test K) under one constant tension stress of 137.9 
MPa (20 ksi). 

Figure 2 shows results of creep at an abrupt temperautre 
increase from 200°C to 230°C at constant tension stress (Test 
D), and simultaneous abrupt temperature increase and stress 
decrease (Test F). The increase in temperature was ac
complished in about 20 sec [1]. 
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Fig. 2 Creep of 2618-T61 Al under an abrupt temperature increase with 
a simultaneous decrease of stress (F1-F2), and without a stress change 
(D1-D2) 

Figures 3 and 4 show creep and creep recovery tests (Test L) 
during which the temperature increased and decreased at a 
contstant rate between 200°C and 230°C, as shown in the 
temperature curves in Figs. 3 and 4. 

Analysis of Data 

Viscous-Viscoelastic Model. Previous analysis [2] showed 
that the short time creep of 2618-T61 aluminum alloy at 
200 °C was well represented by a power function of time such 
as 

e = e° + e + t", (1) 

where e° is the time-independent response, e+ is the coef
ficient of the time-dependent component, and n = 0.270 was 
a constant. By using the creep recovery tests, the time-
dependent component was separated into recoverable and 
nonrecoverable components, and e° was found to be elastic 
strain with negligible plastic strain. 

Equation (1) may be rewritten as 

e = e* + eH 3 / " + e H (2) 

where eE is elastic strain and e + VE and e + v are the recoverable 
viscoelastic strain coefficient and the nonrecoverable viscous 
strain coefficient, respectively. 

The ratio r = e + VE/e + v = 0.55 was a constant over the 
stress range considered. Then, e + VE = e + r / ( l + r ) , and e + v 

= e + / ( l + r ) . The stress dependence of e + was represented by 
a third-order multiple integral representation [10] as 

e+ =F(a-a*)=Fi{a-a")+F2{<r-a*)z +F3(a-a*f, (3) 

where a* is the apparent creep limit below which negligible 
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Fig. 3 Creep of 2618-T61 Al under linearly increasing and decreasing 
temperature between 200°C and 230°C at a constant tension of 137.9 
MPa (20 ksi) 
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Fig. 4 Creep recovery of 2618-T61 Al under linearly increasing and 
decreasing temperature between 200°C and 230°C following the creep 
period shown in Fig. 3 at a constant tension of 137.9 MPa (20 ksi). 

creep was assumed. Subsequent work [11] has shown that 
creep does occur at stresses below the apparent creep limit. 
The values of F, and a* were determined in [2], and are a 
function of temperature. 

Effect of Temperature. The temperature effect was in
corporated in this paper by employing the temperature-
compensated time, introduced by Sherby and Dorn [5] as 

0=\'[e-Q'*TW)ds, (4) 

-11 (7) 

where Q is the apparent activation energy, R is the gas con
stant (= 1.986 cal/mole). Tis absolute temperature (°K), and 
5 and t are previous and current time, respectively. Then creep 
under variable temperature can be described by replacing / 
with 6 in equations (l)-(3). In [12] Dorn and Jaffe showed 
equation (4) to be applicable to small abrupt temperature 
changes over a wide temperature range. At a constant tem
perature, equation (1) may be rewritten as 

e = a/E(T)+C[e-Q'RTt]n, (5) 
where E is Young's modulus as a function of temperature. 
Comparing equation (1) and (5) e+ = Ce_"SARr, where C is 
now a function of stress only as 

C=F'(<x-<j*)=F{(cj-o*)+Fi(o-o*)2+Fi(o-o*)\ (6) 
where the creep limit, a* was assumed to be constant. Then 
the values of F\ may be computed from F, by dividing by 
e-nQIRT_ 

Determination of Activation Energy, Q. Assuming that Q 
is constant between 200 °C and 230 °C the values of Q may be 
determined from creep tests at the same stress but under two 
different temperatures as follows. From equations (1) and (5), 

Test data of D\, HI, and ATI shown in Fig. 1 were fitted to 
equation (1) by least squares with n = 0.270. For 200°C, the 
average of D\ and H\ was used, as e° = 0.2109 percent, e + 

= 0.019217 percent/ft". For 230°C, K\. yielded e° = 0.2147 
percent, e+ = 0.044604percent//;". 

Using these values, the creep curves were computed and are 
shown as solid lines in Fig. 1. The apparent activation energy 
was calculated from equation (7) as Q = 49,000 cal/mole°K. 
From this value the F\ in equation (6) were recalculated by 
separating the temperature effect as F[ = 795.6 percent per 
MPa-ft",F^ = -9.718 percent per MPa2-ft", and Fi, = 
0.0993 percent per MPa3 - ft". 

The activation energy was also calculated from two ex
periments in [1] in which the temperature was changed 
abruptly in about 20 sec during a creep test. Using the Dorn-
Jaffe method [12] for test D1-D2, an increase in temperature 
from 202°C to 228°C at a tensile stress of 137.9 MPa (20 ksi), 
yielded Q = 45,000 cal/mole°K. Test D3-D4 involved a 
decrease in temperature from 228 °C to 203 °C at a constant 
combined stress of 137.9 MPa (20 ksi) tension and 79.3 MPa 
(11.5 ksi) torsion. A value of Q = 50,000 cal/mole°K was 
found from these data. These results compare well with the 
present determination from creep at two different tem
peratures. 

Change of Young's Modulus, E. The Young's modulus 
was determined in [2] as E = 65.02 X 103 MPa (9.43 X 106 

psi)) at 200°C. The result of test K\ at 230°C showed that 
the elastic strain increased and thus E decreased as tem
perature increased. With assumptions of no plastic strain and 
a linear variation of E with temperature between 200 °C and 
230°C, the following relation was obtained. 

E( T)= (76.98 -0.02528 T) x 103 MPa, (8) 
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where Tis absolute temperature (°K). 
The creep curves as recalculated by equations (5), (6), and 

(8), are shown as dotted lines in Fig. 1. 

Creep Recovery. Creep recovery was described by using 
the superposition principle (see [10]) as 

e = e + vt"x+e + VE\t" - ( / - / , ) " ] , (9) 

where tx is the time at which the stress was removed. Em
ploying 6 as in creep, equation (9) may be rewritten as 

e=A e"l+Bien-(e-di)"}, (io) 
where 0, = W e~Q,RT^ds. 

At constant temperature, equation (10) becomes for pure 
tension 

e=j-^Ce-"Q/RT{t'!+r[t'<-V-tiy]}, (11) 

where C is a function of stress as in equation (6), A = 
C/(l+r),andB = Cr/{\+r). 

To check the applicability of equations (9)-(l 1) at different 
temperatures, equation (9) was fitted to the creep recovery 
data of HI and K2; and e+ vtn

x and e+ VE were determined by 
least squares using n = 0.270 as follows: 

HI: e + vt"1 =0.0139 percent, e + K£ = 0.006219percent//!", 

K2: e + vtn
l= 0.0324percent, e + VB = 0.014783 percent//;". 

These values and equation (9) resulted in the recovery curves 
shown as solid lines as in Fig. 1. Also from the previous 
results of e+ , the values of e + v were calculated by e + v = e + 

- e + VE. The ratio r was calculated as r = 0 .50at200°Candr 
= 0.48 at 230°C, which was close to r = 0.55, previously 
determined from several different stress levels at 200°C. Thus 
r = 0.55 may be suitable for the temperature range between 
200°C and 230°C. In the following calculations r = 0.55 was 
adopted as before. Recovery curves recalculated by equation 
(11) are shown as dotted lines in Fig. 1. 

Creep Under Variable Temperature. The temperature-
compensated time, 8, as a form of equation (4), includes the 
effect of previous temperature history up to the current time, 
t. Thus the temperature-history-dependent theory (THD) for 
creep under variable temperature may be formulated as 

e = a/E(T)+al(T-Tl) + c\\'oe-^Rns)dsY , (12) 

where at is a linear thermal expansion coefficient, Tx is a 
reference temperature, and the other parameters have the 
same meaning as in the previous section. For comparison, a 
temperature-history-independent theory (THI) was formu
lated as 

e = o/E{T)+a,(T-Tl) + C{e-&RTtY, (13) 

which states that the total creep strain or creep rate is a 
function of the current temperature only. 

Prediction of a Step Increase or Decrease in Tem
perature. By a step increase or decrease in temperature 
without change of stress following creep at another tem
perature, there may occur an instantaneous increase or 
decrease in axial strain from two different sources, as in
dicated by equation (12) or (13). One is the thermal expansion 
and the other is change of elastic strain by change of Young's 
modulus with temperature. Then, the net change of strain 
may be calculated as 

Ae = AeE + AeT=c2/E(T2)-<jl/E(Tl) + a,(T2-Tl), (14) 

where a2 = " I for test D Fig. 2, and the linear thermal ex
pansion coefficient was determined from a small incremental 
temperature test after the creep recovery period in Tests K and 

l a s a , = 2.457 x 10"3 percent/°C between 200°C and 
230°C. 

As the time-independent strain change was too large to be 
properly included in one plot, the strain change, Ae = 0.0662 
percent was subtracted from data of test D2 and from the 
predictions by equation (12) or (13) for test D2. The (THD) 
curve by equation (12) was shown as solid lines and the (THI) 
curve by equation (13) was shown as dotted lines in Fig. 2. 

Prediction of Simultaneous Increase in Temperature and 
Decrease in Stress. Test F involved a simultaneous increase 
in temperature (200°C — 230°C) and decrease in stress (172.4 
MPa (25 ksi) - 122.0 MPa (17.7 ksi)). The calculation of 
period F\ for (THD) and (THI) are the same either by 
equation (12) or (13). The prediction of creep during period 
F2 was calculated by the modified viscous-viscoelastic (MVV) 
theory [3, 4] as 

tv ={[FV (al)Y
/nei+[Fv (02)]^ (e-e,)v, (15) 

and eVE was frozen since the amount of stress decrease was 
less than the creep limit, a* = 91.43 MPa (13.26 ksi). See [3] 
for details. Also the net instantaneous strain change was 
calculated by equation (14) as Ae = -0.0015 percent. The 
(THD) curves determined by equation (12) and (15) are shown 
as solid lines and the (THI) curves by equation (13) and (15) 
are shown as dotted lines in Fig. 2. 

Prediction of Linearly Increasing and Decreasing Tem
perature. Test L involved a linearly increasing and 
decreasing temperature during creep and during creep 
recovery periods as shown in Figs. 3 and 4. The temperature 
data in °C were fitted to the following four piecewise linear 
equations 

T, ( 0 = 2 0 0 . 3 + 11.976 t, 0<t<2.5 

T2 (0=262 .2 -12 .826 t, 2 .5<?<4.8 (16) 

r 3 ( 0 = 140.7+ 12.518 t, 4.8<t<1.2 

7 4 ( 0 =317.6-12.143 /. 7.2<?<9.6 

These equations are drawn as solid lines in Fig. 3 and 4. For 
the creep period (test LI), the (THD), or (THI) curve was 
calculated by equation (12) or (13), and shown as solid lines or 
dotted lines, respectively. Another plot of the data and 
predictions showing creep only was made by subtracting the 
thermal expansion from both data and theory. Also for 
comparison the predictions without change of elastic strain 
are shown as dash lines for (THD) curves and dash-dot lines 
for (THI) curves. In all the foregoing calculations the 
reference temperature was taken as the starting test tem
perature just before loading. 

For creep recovery (test L2), the (THD) curves were 
calculated by equation (10) with and without thermal ex
pansion and are shown as solid lines in Fig. 4. The (THI) 
curve was calculated by equation (11) with and without 
thermal expansion and shown as dotted lines in Fig. 4. In this 
plot, the disagreement between the (THI) curve and data was 
too large to be included in the same plot. So all the data and 
theory curves were drawn to be matched at the time of the 
first data point. Also the reference temperature was taken as 
the same one as in the creep period (Tl = 200 °C). 

Discussion of Results 

In Fig. 1, creep curves at 200°C (D\ and HI) were well 
represented by using n = 0.270 in equation (1). But at 230°C 
(Kl) using n = 0.270 caused a slight deviation from the data, 
and the deviation would become bigger as time increased. The 
best fit curve to (Kl) resulted in n = 0.398, which suggested 
that the power n might be a function of temperature. 

The creep recovery curves are well represented by using n = 
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0.270 in equation (9) for both at 200°C and 230°C, which 
suggests that the recoverable viscoelastic strain has a constant 
power n independent of temperature. 

In Fig. 2, creep at an abrupt temperature increase with no 
change of stress, as in test DI-D2, was quite well predicted by 
the (THD) equation. But the (THI) equation caused a jump in 
creep strain upon a step change in temperature, which is 
clearly an unreasonable prediction. For creep with a 
simultaneous stress drop and temperature increase, as in Test 
F\-F1, both the (THD) and (THI) equation predicted a much 
lower creep rate than the test data. This prediction might be 
improved by including the creep below the creep limit as 
found in [11], or by considering a change of the creep limit in 
equation (6) similar to the change of yield limit with tem
perature [13]. 

In Fig. 3, creep under linearly increasing and decreasing 
temperature was reasonably well described by the (THD) 
equation. Consideration of a change in the elastic strain with 
increasing temperature improved the prediction, but for 
decreasing temperature the curves without change of elastic 
strain (dash lines) gave a better prediction of creep rate than 
considering the change. 

The prediction of recovery curves in Fig. 4 shows similar 
trends for the creep in Fig. 3. The predicted recovery rate was 
less than the test data. Obviously the results indicated that the 
(THI) equations are not applicable for creep under variable 
temperature. 

No "incubation period" or near zero creep upon reduction 
of temperature, such as reported in [8], was observed in 
experiments on the present material reported in [1] in periods 
D3-D4 of Fig. 7 and 8 of [1]. The creep under combined 
tension and torsion continued after the drop in temperature as 
though there had been only a change in scale in plotting the 
results. Since the stress employed in.D3-.D4 of [1] at the higher 
temperature (228 °C) was high enough to start third-stage 
creep in 0.3 h, the data were not well represented by equation 
(1) with n = 0.270. Hence the (THD) theory would not 
properly describe the data in D3-D4. However, the character 
of the results of D3-D4 is as described by the (THD) theory, 
equation (12). That is there no "incubation period" but a 
simple scale change. 

Conclusions 

1 A viscous-viscoelastic model with a replacement of a 
temperature-compensated time for the actual time described 
creep and creep recovery under variable temperature quite 
well. 

2 The apparent activtion energy of 2618-T61 aluminum 
alloy was determined to be 49,000 cal/mole°K between 200°C 
and230°C. 

3 Creep under an abrupt change in temperature or a 
linearly increasing and decreasing temperature at constant 
stress was reasonably well described by a temperature-history 
dependent theory. 

4 Creep under changes in both stress and temperature 
requires more detailed informations about temperature 
dependence on creep parameters. 
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The Exact Solution to an Ablation 
Problem With Arbitrary Initial and 
Boundary Conditions 
The problem of ablation by frictional heating in a semi-infinite solid with arbitrarily 
prescribed initial and boundary conditions is investigated. The study includes all 
convective motions caused by the density differences of various phases of the 
materials. It is found that there are two cases: (/) ablation appears immediately and 
(/'(') there is a waiting period of redistribution prior to ablation. The exact solutions 
of velocities and temperatures of both cases are derived. The solutions of the in
terfacial positions are also established. Existence and uniqueness of the solutions 
are examined and proved. The conditions for the occurrence of these two cases are 
expressed by an inequality. Physical interpretation of the inequality is explored. Its 
implication coincides with one's expectation. Ablation appears only when the 
surface temperature is at or above the melting temperature. 

1 Introduction 

Problems of ablation have been studied for many years. An 
essential feature is the occurrence of phase changes. Surfaces 
that separate different phases are not at any fixed locations. 
They are unknown a priori and depend on the states of 
materials adjacent to them. These problems fall into the 
general classification of moving boundary problems or Stefan 
problems. 

Moving boundary problems have been investigated since 
the 19th century by the early works of Neumann, Stefan, and 
others. The classical moving boundary problem is concerned 
with melting or freezing of a semi-infinite material initially at 
a constant temperature and being in contact with a different 
temperature at its surface where a change of phase takes place 
immediately. The exact solution to this moving boundary 
problem was established by Neumann (see [1]) in the 1860s 
and by Stefan [2] in 1889. The solution is elegant and simple. 
Temperatures of both phases are expressed in terms of a 
similarity variable x/t[/2 and the position of the interfacial 
boundary is proportional to ti/2. Thus the problem is solvable 
by a similarity transform, i.e., the partial differential 
equations of the problem are reducible to ordinary dif
ferential equations. Reduction to ordinary differential 
equations is possible only in some special situations. To seek 
mathematical solutions to problems with more comprehensive 
boundary and initial conditions has been the objective of 
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many investigations. Since similarity solutions to more 
general problems are usually not possible, many different 
mathematical techniques and approximate methods have been 
devised and applied to find the solutions to these moving 
boundary problems. Specific references may be found in 
many books [3-8] and survey papers [9-12]. 

There have been numerous studies intended to find exact 
solutions to problems with more general initial and boundary 
conditions or to problems with more complicated differential 
equations. Only recently, some exact solutions of the classical 
Stefan problems with arbitrarily prescribed initial and 
boundary conditions in a semi-infinite region have been found 
[13-18]. The solutions to temperatures are expressed in series 
of functions and polynomials in the error integral family and 
time t, and the position of the interfacial boundary is an 
infinite series of txn. 

The problem of ablation by frictional heating is more in
volved than the classical Stefan problem. There are more 
unknowns. In addition to temperatures, velocity components 
also need to be considered. Another difficulty is those terms 
of energy dissipation, which are proportional to the squares 
of velocity gradients. Also, because different phases have 
different densities, there are convective motions induced by 
these density changes. 

Ablation problems have been studied by many in
vestigators. References to many of these can be found in the 
previously cited books and survey papers. Most of these 
solutions are approximate ones. There is, however, an exact 
similarity solution [19]. It adopts a commonly used assump
tion in moving boundary problems that the densities of all 
phases are equal. A consequence of this assumption is the 
absence of nonlinear terms in the momentum and energy 
equations. A recent paper [20] has removed this restriction of 
equal densities. By some appropriate changes of the variables, 
the materials behave as if all densities were equal. The 
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solution is again obtained by a similarity transformation. It is 
thus limited to problems with constant initial conditions. No 
exact solutions to problems with arbitrarily prescribed initial 
and boundary conditions have yet been found. 

The purpose of this paper is to establish some exact 
solutions to ablation problems. We study the ablation 
problem of a semi-infinite solid, moving in a direction 
parallel to its surface, which is adjacent to a viscous in
compressible fluid, subject to arbitrary initial and boundary 
conditions. The convective terms are first removed, as in [20], 
by some appropriate changes of the independent variables. 
This reduced problem in which all phases behave as if they 
had the same density is then solved for arbitrarily prescribed 
initial and boundary conditions. 

In the next section we first formulate the problem and 
introduce the necessary transformations so that the equations 
are reduced to a set of equations without the convection 
terms. These equation are then solved exactly. The interfacial 
boundary, as in many moving boundary problems, is an 
infinite series of txn. All solutions to the problem are shown 
to be uniquely determined if an inequality is satisfied. 
Physical interpretation of the inequality is explored. The 
result coincides with one's expectation. When ablation ap
pears, the surface temperature must be at or above the melting 
point. Moreover, when this inequality is not satisfied initially, 
there is a delay of the occurrence of ablation prior to which 
the temperatures and velocities of the materials are 
redistributed and ablation will occur only after the surface 
temperature reaches the melting point. The complete solution 
to this case is also established. 

2 Mathematical Solutions 

Consider a solid body occupying the half space x<0 and a 
viscous incompressible fluid occupying the half space x > 0 . 
The solid is moving in a direction parallel to the surface of 
contact and its surface, due to the effect of frictional heating, 
reaches the melting temperature at t = 0. Subsequently, there 
coexist three different phases: a solid in the domain of 
- oo <x<s, a newly formed melt in s<x<X, and a liquid in 

A'<x<oo where s{t) is the position of the interface between 
the solid and the melt and X{t) is the position of the interface 
between the melt and the liquid. For convenience, we convert 
the problem and let the solid be stationary. The melt and 
liquid are in motion. Also, we assume that the material 
properties of these three phases are different but constant. Let 
us denote these three phases: solid, melt, and liquid by 
subscripts 0, 7, and II, respectively. Then, in the one-
dimensional case the temperatures and the velocity com
ponents (parallel to the surface) of these three phases satisfy 

(0 Differential Equations: 

Solid: 

dT0/dt = a0{d2T0/dx2) - oo <x<s{t) 

Melt: 

dv,/dt + u,(dV]/dx) 

= v,{d2v,/dx2) s(t)<x<X 

dTI/dt+u,(dTI/dx) 

= a,{d2TI/dx2) + {vI/CI){dv,/bx)2 (2.1) 

Liquid: 

dvN I dt + un {dvn I dx) 

= vn(d
2v„/dx2) X<x<<x> 

dTIl/dt + uII{dTII/dx) 

= an(d
2T„/dx2) + (v„/C„) (dv„/dx)2 

(if) Initial Conditions: 

v„(x,0) = *(x) 
r0(x,0) = * ( x ) , T„(xfi) = Q{x) (2.2) 

{Hi) Boundary Conditions: 

T0{x,t) regular as x oo 

v„(x,i) and TIr{x,t) regular as x—oo (2.3) 

(iv) Interface Conditions at x=s: 

v,{s,t) = 0, T,{s,t) = T0{s,t)=Tm=0 

k0{dT0/dx)x=s-k[(dT,/dx)x=s 

= p,L{ds/dt), 5(0) = 0 

Here we have taken the melting temperature T,„ of the solid to 
be the reference temperature 

(v) Interface Conditions at x=X: 

v, {X,t) = v„ {X,t), T, {X,t) = T„ (X,t) 

lx,{dvI/dx)x=x = fxII{dvII/dx)x=x 

kI{dTI/dx)x=x = kII{dTIl/dx)x=x, X(G) = 0 (2.5) 

The symbols in these equations have their usual meanings: 
k = conductivity, a = diffusivity, n = viscosity, v = kinematic 
viscosity, p = density, C = specific heat, and L = latent heat. 

In addition to the preceding equations and conditions, we 
also need the continuity equations 

duj/dx = 0, dun/dx = 0 

These two equations show that the components of the velocity 
perpendicular to the surface are functions of / only. 
Therefore, applying the law of conservation of mass to the 
elements of interfaces at x=s and x=X, we obtain 

Po (ds/dt) = Pj [{ds/dt) - «7], 

PfKdX/dt) - u{\ = P[[[{dX/dt) - u„] 

Also, we have 

Pl(s-X)=p0(s-0) (2.6) 

Therefore 

X= — er,s 

and 

uI=-erI{ds/dt), u„ = dX/dt= -en{ds/dt) (2.7)1 

where 

ri=pi_1/pi, e=l-{p,/p0) 

The preceding system is a set of nonlinear equations for the 
unknowns Tit vh and s. Fortunately, these nonlinear 
equations can be transformed to a system of linear ones. 
Introducing 

x 
k0=x, t, = — +es, iII={x + er,s)/r[I . (2.8) 

and 

(30
2 = l / a 0 . (3,2=r ;

2/a,-, y,2=r,2/v, 

0j = Vj/ai = @i
2/y,2= Prandtl Number (/ = I,II) 

we obtain 

yi
2{dvi/dt) = d2V,/dti

2 

An error in [20] has been detected. The mass conservation law has been 
inappropriately applied to one of the interfaces. However, the result in [20] 
remains valid, if we set e = 0 and with proper interpretations. 
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P0
2(dT0/dt) = d2T0/dH0

2 

Pi
2(dTi/dt) = (d2Ti/d£i

2) + (ai/Ci)(dvi/dl;i)
2 (2.9) 

This set of transformations essentially changes the description 
in Eulerian coordinates to Lagrangian coordinates [17, 21]. 
The new domains of the three phases are (-<x>,s), (s,0) and 
(0,oo), respectively. The initial and boundary conditions 
remain unchanged, but the interface conditions are now 

(0 atx=sor £o = £i=s 

vj = 0, T0 = Tj = 0 

ko(dT0/a^)-(k,/rr) (dT,/dt,) =p,L(ds/dt) (2.10) 

(i'j) a t x = X o r ? / = | / / = 0 

Vi = v„, T, = Tn 

(Hi/rj) (dvI/d£I) = (ji,r/rrl) (dvn/d£,r) 

(k,/rI)(dTi/di;I) = (kn/rII) (dT„/dU (2.11) 

To complete the description of the problem, we need to 
specify the initial conditions $(x), "ir(x), and Q(x). We 
assume that these arbitrary functions are regular at infinity 
and are expressible by power series, 

*(x) = '£<l>„{y„x/rny/n\, 
o 

<t>„ = Pn"'Hd"*/dx")0 

*W = 2>„(-0o*)"/*!, 
o 

^n = (-^0)"(d"^/dx")0 (2.12) 

n(x) = J^w„WnX/rn)"/nl, 
o 

o>„=an"
/2(d"Wdx")0 

Before we discuss the solutions to the problem, we recall 
that solutions of the diffusion equation may be expressed in 
products of the repeated error integrals and time t. Following 
[13-15], we introduce 

£ „ ( 0 = [i"erfc(-D + /"erfc{l/2 
F„ (£) = [/"erfc(-D-/"erfcfl/2 

G f l(i) = [i"erfc(- |) + (-l)"i"erfcfl/2 (2.13) 

where f=£/(4/)1 / 2 . The function G „ ( $ is a polynomial of 
order n, and is closely related to Widder's heat polynomials 
[22]. Properties of these three functions follow directly from 
those of the repeated error integrals. With these functions, we 
now introduce the solutions of v,, vn, and T0: 

0 

+ I>„(2r )" J F„( 7 / f / ) 
o 

^ / ( ^ 0 = D ^ ( 2 r ) " G „ ( 7 / / f / / ) 
o 

+ Sc„(2T)"i»erfc(7//f//) 
o 

7 , o ( U ) = U ^ ( 2 r r G „ ( ^ 0 r o ) 
o 

+ 2X(2T)Ver fc ( - | 3 0 ro ) (2.14) 
o 

where 

r,=£,/2T, T=ti/2 

Using (2.14), we see that vn and T0 satisfy their respective 
initial conditions. The boundary conditions are also satisfied 
since the prescribed functions are regular at infinity. To 
establish the other two temperature solutions, let us first 
evaluate the squares of velocity gradients, 

(ff;/C,.)(9t>,./9£,.)2 

= ( l /40£(27)"e , . „ (7 / f / ) (2.15) 
o 

where 
n 

Qi,n(D = WI
2/CI) £ [amFm^ + bmEm^m 

m = 0 

n 

Qii,n(n=wII
2/cII)£li<t>mGm_l(n 

m = 0 

-cm/ '"->erfcf]x [</.„_mG„_,„_1(^)-c„_m/"-'"-1erfcr] (2.15) 

It is noted that G _, (z) = F _ t (z) = 0 and we have also used 
r'-'"erfc(z) = ( - l ) ' " $ m ( 2 ) m>\ (2.16) 

where *,„ (z) is the wth derivative of the error function erf(z). 
We may now introduce the temperature solutions T, and 

T„ as 
7V(tO=Se f l (2r)»£ J , ( /S / J» 

o 

+ Lfn(2T)"Fn (/37f/) + 7j(2TyRIin (frfc) 
0 0 

TnlM^gnVTYGAPntn) 
0 

+ ^A„(2T)"i"erfc03 / /f / /) 
0 

+ E(2T)"/? / /.)1(|8 / /f / /) (2.17) 
o 

The particular integrals Rin (7) can be found by the use of 
variation of parameters, 

Ri,n ( 0 0 = \l Pt.n Wj)Ql.n ( W ) * ' 

= 2"-2«!7r1/2e(S/V[/'"erfc(ftf)i"erfc(-|8,.y) 

- i" erf c(/3,j>) i" erfc( - ft fl] (2.18) 

The solution to the position of the interfacial boundary s(t) 
between the solid and the melt must be expressed, as in many 
other moving boundary problems, by a power series of tx/1, 
not t. Accordingly, we express 

S ( 0 = 2 T A ( T ) , A ( T ) = £ \ , T " (2.19) 
0 

Since f, and $„ are defined in (s,0) and (0,oo), we choose the 
integration constants of Rin by 

5/ = X0, 5/7 = 0 (2.20) 

An alternate choice of 5// could be 00, which would simplify 
the evaluation of some not yet determined coefficients. 
However, for some materials it might lead to a divergent 
integral, particularly when j3n

2 -2y2
n>0 since QIln (£") is of 

the order of 0 [exp( - 2?„ 2 f2)]. 
From the initial condition of Tn = Q(x), we find that 

g„=o>n +2"-2«!7r"25o°° 

exp(/32
/^

2)/"erfc(/3/^)G//,„ (y„y)dy (2.21) 
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The integrals in these coefficients are bounded, since Q,-„ is of 
the exponential decay type and 

exp(j8//yy"erfcC8//)') 

is bounded [16] between 0 and 1. 
To complete the solutions, we must find the eight sets of 

coefficients, an, bn, c„,d„,en, fn,h„, and X„. They will be 
found from the interface conditions at £=s and £ = 0. In
serting the solutions to the problem in these equations and 
setting them at t = 0, we obtain 

a0=- b0erf(y,\0), d0=- i/-0/erfc( - ft, A0) 
b0=- <t>0/[r, (7///T/) + erf(77Xo)] 
Co = b0r, (7,7/7,), e0 = -/oerf(ft.X0) 
hQ=- {kIP,rn/k,IP„rI) | /0 

-(7r»/2/2)[° e^I^Qj^y^dy] 

/o=[go-i?/,o(0) + (7r1/2/2) 

{ktfjru/knPnn) J e?lWQIfi{yjy)dy\ 

x [(ki&irn/kn^r,) - erf(7/X0)] - ' (2.22) 

And X0 satisfies 

*oMo[exp(-j^X§) 

- (*/0///7 )/0exp( - ft? X2,)] = P/Z,7r1/2 X0 (2.23) 
where 

*/,o(0) = (7r1/2/2) [ ° e^iyl amy) QIfi(y,y)dy 

The remaining coefficients can be determined from the 
eight interface equations by matching equal powers of T, after 
all functions have been expanded in powers of T. The process, 
if manageable, is very cumbersome. We prefer to differentiate 
these interfacial equations successively and evaluate them at 
t = 0. Also, to circumvent negative powers of r in the force-
balance and heat-balance equations, we multiply the 
equations by tU2 before differentiations. Differentiations of 
these equations can be accomplished by a recent formula for 
the material time derivative of arbitrary order [23]. In the one-
dimensional case where/=/(x,0 andx=x(t), we have 

N N-n 

D?flx,t)=Y, E (M/«!)zjf-"(*)a?a?/ 
n = 0 m = 0 

n 
Z?»W = D E[ l{Drx/r\)kr/kr\\ (2.24) 

kr r=l 

The sum in the last formula is extended to the whole set of 
multinomial coefficients, i.e., all non-negative integers kr 
such that 

n n 

£jkr = m, £ji"kr = n (2.25) 
/ / 

These multinomial coefficients are known [24]. Also, to find 
the derivatives of Rin (ftA), we use the extended Leibniz 
formula 

D?\*Azj)dy=fi»Xz,y)dy 

N-l 

+ I,D»-»-i[dPf(z,y)y=z] (2.26) 
p = 0 

and the identity [25] 
D^[e*2/nerfc z] = (-2)N[(N+n)\/n\]ez2/N+"erfc z (2.27) 

Performing differentiations of the eight interface 
equations, we obtain the recurrence formulas for N> 1, 

N N 

%a„[B%( -7/)+2tf(7,)l + 2>„[2tf( -7 / ) 

-•B?(7/)]=0 
N N 

%tnA»W0)+%d„B»(-M = 0 

E e„ [BN
n ( - ft,) + B» (iS,)] + £ / „ [B» ( - ft,) 

1 0 

-B»(fo)] = 0 
N N -. 

Woko U iM?-",1 (ft,) + E dnB^ ( " ft,) 
L 0 0 J 

r N 

~ (fr*//'/) [Ee«[*"-11 (-Pi)-B^-l(ft-)] 

N 

+ Efn[B^-H-Hi)+B^Hm 

+ Ev»!(pI)}=2(N+l)pIL\N 
o J 

aNEN(0) + bNFN(0) = <t>NGN(0) + cNFN(0) 

eNEN(Q) +fNFN(fl) + R,,N(fl) = gNGN(fl) + hNiN erf c(0) 
M > - 1 (0)+ *>„£„_ ,(0) 
= (ynHnri/yiHirn) [<t>NGN-1 (0) - cNiN erfc(0)] 

eNJFN_1(0)+/NJBN_1(0) 
- (2N~' /AV/2*werfc(0)iv_ j (0) 

= (.kIIp„rI/kIpIrII) [gNGN^, (0) + A ^ - ' erfc(0)] 
where 

N' 

ASM) =2" E /3'"Z^-"(X)G„_m(ftX0) 
M = 0 

iV* = min(/V-rt,fl) 

B%{® = 2" E (-/3)mZj);-"(X)/»-*erfcC8\)) 
m = 0 

^,.(ft)=2«-1 E zjX-" (X)ar'^(ftAjio 

A = \ 0 

Z"mW=EUl^r)kr/kr\] 
kr r=\ 

subject to 
n n 

1 1 

and 

d%Rhn (ftA) = df (AP,„ (Aj/)&,„ ( W ) * ' 

= 2"-27r1/2ff /7!ft'"e'3(V[(-l)'"/"-merfc 

(ftX0)/"erfc(-ft,v) 
- /"erfc(ftj') /""'"erfc( - ft X0)]Q,. „ ( 7 j0 tfy 

m-\ p q 

p = 0 q = 0 r=0 N V ' x ' ' 

x [ ( - lF-*/"-'"-"-'-erfc(ftXo)/'"^^!erfc(-ftXo) 

-/"+^rerfc(ftX0)/"-'"""-rerfc(-ftXo)] 

(2.28) 
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a « - p - « - i Q t B ( W ) 

N N 

WQi,»ftiy)l =(£/27/N/C/) E E 
i\) 

( r ) [ ( 0 m + * „ 

+ (-!)'(&„,-«m)/" 

J^- '- 'erfcC-Y/Ao) 

r+1erfc(7/X0)][(a„_m 

J n — m 
— a 

* - m + " - r - l e r f c ( _ 7 / X 0 ) + (-l)"- '-(& / i_„ 

fl_m ),•»-»+"-'- 'erfc(7/\))] 

Af AT 

aj!'G//.B(7/^) x = (fe27//c„) E E 
*0 m = o r=0 

( > " 
[</»,,- m^n — m+N—r—X (yn\>) 

- ( - ! ) ' 

'"-'-1erfc(7//Xo)] 

p i /»-»+A'-r-i e r f c ( T / / X o ) ] (2.30) 

From these equations, starting from iV= 1 sequentially, we 
may find all coefficients. 

It is noted that the preceding solution includes the previous 
known similarity solutions [19, 20] as special cases. When 
$(x), ^ ( x ) , and Q(x) are constant, we have 4>„ = \p„=oi„=0 
(«>1). Then the recurrence formulas (2.28) become a set of 
homogeneous equations for the undetermined coefficients. 
Thus all coefficients are zero except those of the zeroth order. 
The complete solution of the problem is reduced to 

vI = a0+b0erf(yI£,) 

y / / = 0o+coerfc(7 / /f„) 

r 0 = ^0+tf0erfc(-/30ro) 

r / = e0+/oerf(|8 /f /)+/J / ioC8 /r /) 

T„ = g0 + h0erfctfnta) +Rn,oWn?n) 

S = 2\0T (2.31) 

It is in complete agreement with those in [19, 20], 

3 Existence, Uniqueness, and Convergence 

In the preceding section we have established the formal 
solution to the problem. The solution is meaningful only 
when all coefficients exist and are uniquely determined and 
when the series converge. It is the purpose of this section to 
show that all coefficients exist and are unique when an 
inequality is satisfied. This inequality is definitely required 
from the physics of the problem. 

Let us first examine those coefficients of zeroth order. All 
coefficients of zeroth order are unique if X0 exists. The value 
of X0 satisfies 

fcoA>G?oexp(-/3gXfj)--(*//'7)ft/oexp(-0?X§) 
= PILTTU2\0 (3.1) 

This transcendental equation has both positive and negative 
roots. However a positive root is physically inadmissible, 
since it corresponds to an unrealistic cases where an increase 
of solid material would appear by ablation. We thus ignore 
the positive roots of this equation. 

For negative X0, let us introduce X0 = - 1 \ and rewrite the 
equation, 

AT,e<'3o2-'J/2)i2erfc(|30^) = i + Jfir27r1/2ieoJ/e<Werfc(/30i?) 

where 

Kx = -{k,{i,ik0$Qr,)(j0/^), 

We assume that all material constants are positive and \p0 <0 . 
To examine the existence of X0, we first note that for positive 
z, exp(z2)erfc(z) is monotone decreasing bounded between 1 
and 0 [20], Also 7r1/2ze* erfc(z) is monotone increasing [16] 
bounded between 0 and 1. Thus for positive TJ the left-hand 
side of (3.2) is monotone decreasing fromKx to 0 whenKx > 0 
and is monotone increasing from Kx to 0 when Kx <0 . The 
right-hand side is monotone increasing from 1 to 1 +K2. Thus 
a unique solution to positive i\ or a negative Xo exists if and 
only if A^ >1 or 

- (* / 0/ /*o0or / ) ( / ,
o / to ) )>l (3.3) 

It is seen from (2.22) that when X0 exists, all coefficients of 
zeroth order exist and are unique. 

Proof of the existence of coefficients of higher order can be 
accomplished as in some previous papers on moving boun
dary problems [13-18]. However, the present problem is more 
involved. The proof, though straight-forward, is quite 
lengthy. We will not reproduce it. Basically, we first solve for 
\N by eliminating all other coefficients or order N. It can then 
be shown that \N exists and is uniquely determined. This, in 
turn, shows that all coefficients of order N are uniquely 
determined. 

Let us now turn to the convergence of the series solution. 
Their convergence can be implied from the maximum prin
ciple of the parabolic equation or can be proved directly as in 
some previous papers on moving boundary problems [13-18]. 
The complete detail of the direct proof is also very lengthy. It 
will not be reproduced here. Essentially, the maximum 
principle guarantees that the maximum value of the function 
occurs at the boundary of the x—t domain. Since the data on 
the boundary are bounded by specification, both the velocity 
and temperature in the interior are less than the corresponding 
functions at one of the interfaces. We can thus state that all 
series solutions are convergent. 

4 Physical Interpretation 

In the preceding section we have shown that a unique 
solution of ablation exists only when the inequality 

(*//S//*ol8o'7)/o + to>>0 (4.1) 

is satisfied. In this study we exclude the possibilities that 
resolidification might occur. For proper ablation we assume 
that i/'0<0 and C J 0 > 0 . Using e < l , we find from (2.23) and 
(2.15) that RIfi{®<0 and e7 ,0(f)>0. Then from (2.21) and 
(2.22) we find that g0 > 0 and / 0 >0 . This in turn shows that 
Ki is positive. Thus the foregoing inequality is satisfied by 
large values of f0 or small absolute values of \j/0. A large value 
of /o can be achieved by a large (j>0 or a large co0. Physically, it 
means that a unique solution exists when (/) the relative 
motion between the solid and the fluid is large, (//) the initial 
temperature of the solid is close to the melting temperature, or 
{Hi) the initial temperature of the fluid is high above the 
melting temperature. From a physical point of view, these 
three effects are expected to be the dominant factors. 

To further explore the physical meaning of this inequality, 
let us first consider Kx = \. It shows Xo=0. Equation (3.3) 
becomes 

(*//5//*ol8o',/)/o +l^o=0 

or (knpn/k0P0rii)go + to=0 (4.2) 

K2 = -P,L/k0l30
2\l'0 (3.2) 

surface temperature of the solid at contact is initially at the 
melting temperature. To prove this assertion, let us consider 
the case where no ablation occurs. There are only two 
materials, solid and liquid. The velocity and temperature 
solutions are found to be 
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Vn(x,t) = Yi4>n(2TyGnhirtn) 
o 
+ X>,'(2T)"/"erfc(7//r//) 

o 

T0(x,t)=^^n(2TrGn(M0) 
o 

+ £<«(2T)Verfc(-0oro) 
o 

0 

+ XJ/!*(2T)"/"erfc(/3//f//) 
o 

+ S(2T)«/?J/i#I(/3//f//) (4.3) 
o 

where R*Ihn (f) is the same as i? / /n (f) in (2.18) with the ex
ception that c„ are replaced by c*. The preceding equations 
satisfy the prescribed initial conditions. Using the continuity 
requirements at the common boundary, we find 
c*=- [ l+ ( - l ) " ]0„ /2 

K = d'n-(g*n-t„) 

^* = ( g * - ^ ) [ 2 

+ ^ £ _L ( 1 _ ( _ i r ) ] / r 1 + ^ i (4.4) 

The surface temperature Ts at x = 0 is 

r , (/) = T0(P,Q = T„(0,Q 

= E (27-)" [^G„(0) + rf,*/"erfc(0)] (4.5) 
o 

Ablation will occur only when the surface temperature of the 
solid is at or above the freezing point. At t = 0 we have 
r,(0) = r0(o,o) = ^o+do>o 
or 

(fc0/V///£//|3// )tfo + *o > 0 (4.6) 
This is the same as (4.2). Thus the inequality K\ > 1 is 
equivalent to the statement that the surface temperature of the 
solid must be at or above the melting point before ablation 
appears. 

5 Preablation 

It has been shown that ablation starts immediately only 
when the inequality (3.3) is satisfied. When Ky < 1, it does not 
mean that there is no ablation. With proper initial conditions 
the surface temperature of the solid, at some later time, may 
reach the melting point and ablation will then appear. It is 
also possible that the surface temperature of the solid will 
never reach the melting point, then no ablation will ever 
occur. If the initial conditions of both velocity and tem
perature are so prescribed that the surface temperature will 
reach the melting point at a later time, it is then necessary to 
know the "waiting" time t„ of this preablation period. 

The solution to this preablation period is the same as in 
(4.3). The surface temperature at x = 0 is 

TSU) = £ ( 2 r ) " [ ^ + d*„] = Tim- 2>„ r " + l (5.1) 
o o 

Using Lagrange's inversion formula, we find 

tU1 = T='£<ln(Ti„l-Ts)"+l/(n+iy. (5.2) 
o 

where 

qn=D"MT/{Ts)Y^\(,=D"7[VPnT")-»-% 

n 

= £ (-i)"'(™+«)!z;;,(p)/(A,)"'+"+1 

m = 0 

Taking Ts = Tf = 0, we obtain 

r«=L<ln(Tinly
+l/(n+iy. (5.3) 

o 
With known waiting time TW, we may proceed to solve the 

ablation problem. In this case the initial conditions are no 
longer prescribed by specifications. They are generally not in 
some special forms suitable for known similarity solutions. 
The solution can, however, be analogously derived as those 
given in the previous sections. As a matter of fact, after we 
introduce 

t+=t-tw, <S>+(x) = vn(x,tw) 

*+(x)=T0(x,tJ, U+(x) = TII(x,tw) (5.4) 
the velocity and temperature solutions are those derived in the 
previous sections. 
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Statics and Geometry of 
Underconstrained Axisymmetric 
3-Nets 
A 3-net is a system formed by three intersecting arrays of linear flexible members 
such that every intersection involves one member of each array. The subject of this 
study is an axisymmetric 3-net where the first array is meridional and the other two 
are inclined to a meridian at equal but opposite angles. If the net intersections are 
not fixed the system is underconstrained and, generally, does not possess a unique 
configuration. However, such systems allow exceptional configurations in which 
they lack kinematic mobility and admit prestress. Pertinent equations governing the 
intricately interrelated statics and geometry of axisymmetric 3-nets are developed 
and some closed-form solutions are obtained. On this basis, two particular classes 
of immobile (static) 3-nets are synthesized and two corresponding sets of feasible 
geometric shapes are investigated. 

Introduction and Problem Statement 
A 3-net is formed by three intersecting arrays of linear 

flexible members (Fig. 1) with every intersection involving one 
member from each of the arrays. If intersections are fixed the 
system is a discrete membrane: it can be given an arbitrary 
shape; its intrinsic geometry is invariant; under given loads 
and boundary conditions it behaves (and can be analyzed) as a 
conventional thin membrane. However, if the members of 
just one array are allowed to slide at the intersections, an 
underconstrained system results. The same is the case when 
the intersections are not fixed at all so that the members of all 
three arrays can mutually slide. 

An underconstrained system has a positive number of 
degrees of freedom and generally admits a variety of 
geometric configurations. In any given configuration such a 
system can balance only special, so-called equilibrium loads; 
to support any other load, the system must change its con
figuration at the expense of kinematic and, possibly, elastic 
deformations. This intricate interrelation between the 
equilibrium loads and configurations of underconstrained 
systems underlies the concept of statically controlled 
geometry: system geometry is attained and, if desired, can be 
actively controlled by monitoring the external loads. 

Varying the geometric parameters of an underconstrained 
system does not affect its number of degrees of freedom, and 
gives rise to a series of different geometric configurations. 
Among these there exist certain exceptional ones where the 
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system, in spite of the positive number of degrees of freedom, 
lacks kinematic mobility [1]. Such exceptional configurations 
can be considered as natural configurations of an un
derconstrained system and can be identified or synthesized 
using the following statical criterion [2]: an underconstrained 
system allowing a stable state of self-stress is immobile 
(static). Note that only the statical possibility (not the actual 
presence) of a stable self-stress is the characteristic sign of the 
static configuration, although prestressing enhances the 
system performance in resisting a general load. 

The geometry of an underconstrained system allowing self-
stress is not arbitrary, which raises the problem of 
establishing the set of feasible shapes along with the 
corresponding statical-geometric interrelations. The present 
study addresses this problem as applied to an un
derconstrained axisymmetric 3-net. The system involves a net 
formed by two symmetrically inclined arrays of cables with 
either free or fixed intersections and an array of meridional 
members that are fixed only at their ends. Since meridians of a 
surface of revolution have zero geodesic curvature these 
members can be made of partially overlapping thin narrow 
strips enveloping the net surface. It is assumed that the cables 
resist only tension whereas the meridional members can 
support both tension and compression. In the latter case, the 

MERIDIONAL 
MEMBERS 

Fig. 1 Axisymmetric 3-net 
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Cm+Cn 

A 
Fig. 2 Generic element of net 

net is assumed sufficiently fine to prevent local buckling of 
the meridional members between two adjacent intersections 
(overall buckling is precluded by the tension arrays acting as a 
continuous lateral constraint). 

It is readily seen that an entirely tensile 3-net must be of 
negative Gaussian curvature and the axial resultant of its 
prestressing forces is tension. It is not obvious in advance 
what these characteristics can be for a system involving 
compressed meridians. In particular, it is interesting whether 
a self-contained (statically self-balanced) system is feasible, 
i.e., whether the axial resultants of the compression and 
tension prestressing forces can cancel each other. 

The solution to the stated problem in its entirety first calls 
for establishing the number and the nature of arbitrary 
elements governing the interdependent statics and geometry 
of an immobile underconstrained 3-net. 

Pertinent Statical-Geometric Relations 

In an underconstrained 3-net subjected to a normal surface 
load, the force in the meridional members per unit polar angle 
does not vary along the member length. Generally, this is not 
the case with the inclined cables where the force pattern is 
closely related to the intrinsic geometry of the net. If the 
tension, T, in a given cable, is referred to the unit length of its 
counterpart cable (Fig. 2), the resulting meridional and hoop 
forces are, respectively, 

r , = T ctn a, T2 = T tan a (1) 

where a is half the net angle. Introducing (1) into the 
equilibrium condition of an axisymmetric membrane in the 
meridional direction gives 

r(T ctn a)'+r'T(ctn a - t a n a) = 0 (2) 

Here r is the radius of revolution and a prime denotes dif
ferentiation with respect to the axial coordinate, z. Equation 
(2) admits a quadrature 

Trctna = CJ(r) (3) 

where . r 

/ ( r ) = e x p l tan2 adr/r (4) 
Jr0 

with the subscript 0 designating (here and in the following) a 
reference axial location z=Zo • According to (1), expression (3) 
represents the meridional force in the net per unit polar angle 
and the integration constant C„ is the magnitude of this force 

Fig. 3 Geometric parameters and forces of 3-net 

at z0. Note that solution (3) is valid for any normal surface 
pressure since normal load is irrelevant for equation (2). 

Adding force (3) to the constant force C,„ in the meridional 
members and projecting the sum on the z-axis (Fig. 3) allows 
the internal axial force in the 3-net, F, to be evaluated. Setting 
it equal to the axial force due to the surface pressure P results 
in 

F=27r[C,„+CJ ' ( r ) ]s in0=F o +27r\ Prdr 

where 

(5) 

(6) FQ =27r(C„, +C„)sin 80 =F„, +F„ 

and 8 is the meridian slope. Equation (5) interrelates the 
equilibrium loads and configurations of an axisymmetric 3-
net and can be used in two ways. First, for a given load, the 
corresponding equilibrium configuration of the 3-net can be 
determined. This is done by using the substitution: 

sin0 = ( l + r ' 2 ) 1 / 2 (7) 

which reduces (5) to a first-order equation between r and z. 
Second, for a given 3-net (with a known geometry), the 
equilibrium loads can be evaluated. To this end, equation (5) 
is differentiated and, taking advantage of 

ff! =d sin 8/dr, a2 =sin 8/r (8) 

where ax and <T2 are the principal curvatures of the surface, 
transformed to the following form 

C m a , / r + C „ ( a , +ff 2 tan 2 a) / ( / - ) / r=P (9) 

From here, it is obvious that any equilibrium normal load is a 
linear combination of the two known axisymmetric func
tions-those accompanying the parameters Cm and C„ in (9). 
However, there exists a fundamental difference in this regard 
between an ordinary 3-net and a static one. For the latter, the 
possibility of a self-stress stipulated by the general criterion of 
a static system requires the existence of a nontrivial solution 
to the homogeneous equilibrium equation (hence the term 
"natural configuration"). In this case the two functions in (9) 
must be affine; as a result, the equilibrium load for a static 3-
net is determined modulo one parameter. 

Feasible shapes of static 3-nets are obtainable from the 
slightly modified equation (5) with P = 0: 

[C+/(/-)]sin0 = (C+l)sin<9o (C=Cm/C„=F,„/F„) (10) 

Note that F,„ and F„ were introduced in (6) as the respective 
contributions of the meridional members and of the net to the 
total axial force at the reference parallel. In a prestressed 3-
net, the two components of the axial force vary along the z-
axis while their sum preserves. 

Like the preceding pertinent equations, equation (10) 
contains function f(r) which is defined by (4) and can be 
evaluated only upon specifying the relation betweeen r and a. 
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Fig. 4 Feasible shapes of Chebyshev 3-nets 

This, in turn, requires knowing the intrinsic geometric 
properties of the net. In what follows, the two most important 
types of nets are investigated—a Chebyshev net and a 
geodesic net. 

A Chebyshev net is most common: it has rhombic cells and 
fixed intersections. It was proved by Chebyshev that due to 
the variability of the net angle the net is applicable to any 
smooth surface. In the axisymmetric case, 

r = c sin a (11) 

where c is the maximum radius kinematically attainable for 
the given net. Thus, for a Chebyshev net, equation (4) yields 

f(r) = [ (c 2 -r2) /(c2 -r2,)]172 = cos a0/cos a (12) 

A geodesic net is one formed by geodesic arrays. The 
significance of this net lies in the following fact: if, under a 
normal surface load and/or prestress, a net meets one of the 
three conditions: (a) it is geodesic; (b) its intersections do not 
transfer tangential forces; (c) member forces do not vary 
along the length; then all of the three conditions are met. An 
axisymmetric geodesic net obeys the Clairaut formula 

r sin a = c (13) 

where c is the radius of the smallest parallel circle (if it is not 
the equator) of the net. As a result, 

f(r) = (rQ/r)[{r2-c2)/{r2-c2)V/2 

= cos a/cos a0 (14) 

and solution (3) becomes a relation similar to those well 
known in literature since pioneering works [3,4]: 

Tr/sin a=C„/cos a0 (15) 

Now particular configurations of static 3-nets are ob
tainable explicitly: after replacing /(/•) by either (12) or (14) 
and specifying parameters C, a0, and d0, equation (10) can be 
integrated numerically upon the assignment of the initial 
radius r0. However, r0 is but a scale factor which only 
establishes the physical size of the system and does not 
contribute to the variety of feasible shapes. Therefore a 
systematic and comprehensive qualitative survey of these 
shapes is conveniently carried out on the basis of the 
foregoing closed-form solutions without numerical in
tegration. 

Chebyshev 3-Nets 

This name is retained for a 3-net where the first array is 
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diagonal to the Chebyshev net formed by the two remaining 
arrays. The set of equilibrium shapes is explored by studying 
the interrelations between parameters representing the state of 
self-stress and those describing the geometric configuration of 
a 3-net. The most convenient statical parameter is the ratio C 
= Cm/C„ of the prestressing forces at the reference cross 
section z = z0. The principal curvature ratio at the same 
location is chosen as the most suitable parameter charac
terizing the overall geometric shape of a 3-net. The sought 
relation is found from (9) and (12) at P = 0 and r = r0: 

a,/cr2lo= - t a n 2 a 0 / ( C + l ) (16) 

Combining (10) and (12) yields another useful relation: 

(C + cos a 0 / c o s a)sin 8= (C+l)s in 90 (17) 

In Fig. 4, the graph of equation (16) is used as a reference 
for the set of equilibrium shapes evolving as a function of C 
= Cm/C„. The limiting case of C— °o results in a cylindrical 
3-net (a) with inclined arrays force-free and the meridional 
members supporting the entire axial load F. As C decreases, a 
succession of entirely tensile, hourglass-shaped forms evolve, 
with a noteworthy case (b) where C = 0. In this configuration 
the meridional members are idle (C,„ = 0, in transition from 
tension to compression) while the inclined array net carries the 
entire axial load. Equation (17) simplifies to 

sin 0/cos a = sin 0o/cos a0 (18) 

which allows the Gaussian curvature of the net surface to be 
evaluated from (8), (9), and (11) as follows: 

K=aia2= - tan2 a sin2 6/r2 

= -sin20o/c2cos2a!o=const. (19) 

As in known [5] the only surface of revolution with a 
constant negative Gaussian curvature is a pseudosphere. 
Therefore, a segment of a Chebyshev net (like a basketball 
net) stretched between two parallel rings has the form of a 
pseudosphere. This interesting result, apparently unknown in 
differential geometry, has been recently obtained in a dif
ferent way in [6]. It is not difficult to demonstrate that, 
depending on the sum 90 + a0 being greater than, equal to, or 
smaller than ir/2, the net acquires, respectively, the form of a 
hyperbolic, parabolic, or elliptic pseudosphere. 

To the left from the point C = 0 (Fig. 4) lies the domain of 
static 3-nets with the meridional array in compression. 
However, the total axial force F remains tensile until another 
station, C = - 1, is reached. Here F = 0 and the 3-net should 
have become self-equilibrated; instead, as is seen from 
equations (16) and (17), with C — - 1, the system flattens (c) 
and degenerates. 

All the 3-nets within the investigated range (except for the 
two limiting cases) have negative Gaussian curvature but do 
not necessarily contain an equator. An equator exists when 
the minimum radius and, by virtue of (11), the minimum net 
angle occur at 6 = ir/2 and are positive. According to (17) and 
(6), this condition is satisfied when 

sin d0>Ca = (C+cos a0)/(C+l) 

= (Fm+F„cosa0)/F (20) 

If this condition is not satisfied the 3-net has an apex where a 
= 0 and the meridian slope, 6a, is given by 

sin0 a = s in0 o /C a (21) 
The maximum radius of the net equals c [cf. (11)] and is the 
radius of regression circle. Here 6 = 0 and, as is seen from 
(10), a prestressed 3-net cannot contain its regression circle. 

After disappearing at C = - 1 , the equilibrium shape 
emerges in a completely different form as a compression 
system (d). From here on, the system always contains an 
equator and two apexes where the meridian slope is deter
mined by (21). With decreasing value of C, the equilibrium 
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Fig. 5 Feasible shapes of geodesic 3-nets 

shapes tend to become more and more oblong (e) and finally 
the limiting case of C — — oo produces a cylinder (/) with 
compressed generators, thus completing the set of feasible 
shapes of static Chebyshev 3-nets. 

Geodesic 3-Nets 

The striking similarity between formula (12) for a 
Chebyshev net and its counterpart (14) for a geodesic net is 
somewhat surprising for the nets of such different geometric 
origins. This similarity is both the starting point and the basis 
of a far reaching parallelism in the analysis of the two nets. 
For a static geodesic 3-net, equation (16) preserves and its 
graph is used once again as a reference for the set of 
equilibrium shapes (Fig. 5). The key relation between the 
angle a and the meridian slope 6 is obtained from (10) and 

^ ^: (C + cos a/cos a0 )sin 6 = (C + 1 )sin0o (22) 

The cylindrical geodesic 3-net (a) corresponding to C — oo 
is identical with its Chebyshev counterpart: in both cases the 
inclined arrays are two counterwound helices forming a net 
that is simultaneously Chebyshev and geodesic. With 
decreasing C, the originally force-free geodesic net takes on a 
gradually increasing portion of the axial load and at C = 0 it 
supports the entire load F. In this configuration the 
meridional members are force-free and do not exert any 
normal pressure on the net. As a result, the inclined cables 
have zero normal curvature in addition to being geodesic. 
This means that they are straight and the surface is ruled. 
Since the only axisymmetric ruled surface is a one-sheet 
hyperboloid of revolution, this is the shape of a static geodesic 
3-net at C = 0 [(b) in Fig. 5]. 

The series of hourglass shapes between (a) and (b) do not 
always contain the equator. This is verified by evaluating cos 
a at the equator (0 = 7r/2) from equation (22); cos a being 
positive requires that 

sm60>Ci=C/(C+l)=Fm/F (23) 

When (23) is not satisfied the 3-net surface truncates at the 
axial location with a = ir/2 where the meridian slope 0, and 
the radius r, are determined, respectively, by 

sin 6, =sin 60/C,, r,=c = r0sin ct0 (24) 
Unlike Chebyshev 3-nets, static geodesic 3-nets of negative 
Gaussian curvature do not have a maximum radius and ex
pand indefinitely in the axial direction with increasing radius. 
The corresponding parallel circles in Fig. 5 are shown by 

broken lines as opposed to the solid lines designating the 
terminal (truncation) parallels. 

As is seen from (23), tensile systems with compressed 
meridional members (0 > C > - 1 ) never truncate. When 
approaching the lower limits of this range the system flattens 
(c) and degenerates to emerge in a pill shape (d) as a com
pressed system. Its further evolution with decreasing C leads 
to a barrel shape (e) and at C — — oo ends with the limiting 
cylindrical shape (/). 

Note that at C < - 1 condition (23) cannot be satisfied and 
the corresponding feasible shapes are always truncated. 
Indeed, since each of these shapes contains the equator, its 
plane can be taken as the reference plane, z = Zo I then sin 0O 

= 1 and, in accordance with (23) and (24) 

sin 6, = (C+ \)/C=F/Fm < 1 (25) 

Truncation of geodesic nets is well known [3, 4] in wound 
shell design where the shell shapes can be nearly arbitrary and 
both r, and 0, for a given shape depend on the chosen initial 
angle of winding, a0. The situation is quite different for 
prestressed geodesic 3-nets. Here the feasible shapes are 
governed by statics, and the slope 6, which is determined by 
the parameter Cdoes not depend on the initial angle a0-

Summary and Conclusions 

1. The natural (static) configuration of an un-
derconstrained axisymmetric 3-net is determined by three 
arbitrary parameters—the force ratio C, the meridian slope 0(l 

and the angle a0 at the initial parallel. The resulting set of 
feasible shapes provides a diverse variety of geometric 
features. A suitable segment of the feasible surface of 
revolution can be used for applications where the axial 
symmetry is of no relevance. 

2. The established relations between the equilibrium loads 
and configurations of axisymmetric 3-nets are useful for 
system selection for a given load and the general assessment of 
the system's deformabihty (purely elastic deformation under 
equilibrium loads versus a combination of kinematic and 
elastic deformations under a general load). 

3. In the context of statically controlled geometry, the 
found closed-form statical-geometric interrelations can be 
instrumental in obtaining a required geometric form with a 
high degree of precision. Subsequently this form can be either 
made permanent (by introducing additional constraints at the 
intersections or by fixing the surface with a matrix) or actively 
controlled (by adjusting the prestressing force or the surface 
load using some kind of feedback). 
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A Variational Approach to the 
Dynamics of Structures Having 
Mixed or Discontinuous Boundary 
Conditions 
A procedure is developed whereby the steady-state forced response and the modes 
of free vibration for elastic systems having mixed or discontinuous boundary 
conditions can be determined. Approximate solutions are obtained as a super
position of a set of functions, each of which satisfies the field equations but not the 
boundary conditions. The coefficients of this expansion are obtained through 
applying a variational principle developed from Hamilton's principle which for 
simple harmonic motion, is equivalent to Reissner'sprinciple. The reduction from 
the general elastic solid to the elastic plate is given, as are some results obtained for 
the first several natural frequencies of an elastic circular plate, free on a portion of 
the boundary and clamped on the remainder. 

1 Introduction 

The natural frequencies of elastic plates have been deter
mined by many methods. For thin plates of uniform 
thickness, simple shapes, and simple boundary conditions, the 
eigenfunctions may be determined through separation of 
variables, and the natural frequencies determined. Many such 
solutions have been tabulated [1]. 

For plates that are not of uniform thickness or properties, 
such approximate techniques as the Rayleigh-Ritz and 
Galerkin methods may be applied. These methods are best 
suited to estimating natural frequencies for systems having 
simple boundary conditions, i.e., bounding curves coincident 
with coordinate lines, and with continuous boundary con
ditions along segments of the bounding curves. In other cases, 
numerical methods such as finite difference and finite element 
techniques must be applied. A survey of progress in these 
more complicated problems has recently been prepared [2]. 

There are, however, problems for which the need for ap
proximation arises not because of complications in the field 
equations, but through difficulty in satisfying the boundary 
conditions. Such examples are plates of complex shape and 
plates with discontinuous edge conditions. In such cases, 
appropriate trial functions can be constructed through 
superposition of functions that satisfy the field equations 
only, with the coefficients being determined by a process such 
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as boundary integral techniques, collocation, minimization of 
squared error on the boundary, or the method of weighted 
boundary residuals. These same methods have been used with 
some success to determine natural frequencies of plates of 
various shapes [1,3]. 

Discontinuous, or mixed boundary conditions may be 
divided into two classes, depending on whether one or more 
boundary specification changes. In the case of plates, the first 
class includes the transition from simply supported to 
clamped, from clamped to guided, from simply supported to 
free, or from guided to free. The second includes the tran
sition from clamped to free and from simply supported to 
guided. Problems from this class have received some attention 
[4-7]. 

A variational principle developed from Hamilton's prin
ciple will be used to develop a procedure for determining the 
general response of elastic structures having mixed boundary 
conditions and then applied to find the natural frequencies of 
a circular plate, partly clamped and partly free. 

2 The Variational Principle 

In the application of Hamilton's principle, it is necessary to 
seek an extremal value of the Lagrangian function over a class 
of admissible virtual displacements that vanish, for all time, 
over the portion of the boundary where the displacements are 
to be prescribed [8]. For the class of problems considered in 
this work, finding such functions is not readily done; 
therefore it is of interest to investigate the possibility of ex
tending the class of admissible functions to include functions 
that do not satisfy the boundary conditions on those segments 
of the boundary where tractions are presecribed, nor on those 
portions whre displacements are given. 

This relaxation of requirements on the trial functions is 
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precisely that permitted in the use of Reissner's principle [9], 
which is applicable to both the static response and the simple 
harmonic motion [10, 11] of elastic systems. Although the 
example problem considered in the present work is of this 
latter category and Reissner's principle is applicable, it is of 
interest to begin with Hamilton's principle and to derive a 
somewhat more general result. 

We begin by writing a Lagrangian function, where the 
strain energy of an elastic material is written in terms of a 
strain energy density, W\ the kinetic energy, K\ and the 
potential energy of conservative external forces, A. Thus 

L=\vW(eiJ)dV-\v^ u,u,dV 

-\sJ-U>dS-\vF'U'dV 

(1) 
The volume of interest, V, is enclosed by the surface S = S„ 
+ Sa, where S„ is the portion of the boundary on which 
displacements are to be prescribed and Sa is the portion on 
which tractions, T,*, are given. The body> force, Ft is 
presumed to be prescribed. The customary requirement that 
the displacements satisfy a boundary condition is replaced by 
a constraint, 

c , = ( r , (K,-K,*)ds (2) 

where the T, are Lagrange multipliers. We assume, as in the 
further generalization of Reissner's principle due to Washizu, 
[12] that the strains and displacements may be varied in
dependently. Thus, the requirement of satisfaction of the 
strain-displacement equations is replaced by constraints of the 
form 

C2 = \v\j[eij- y (Uu + Ujj^dV (3) 

where the comma denotes partial differentiation. The strains 
are assumed to be symmetric, thus the \y are also. 

The new functional is 

L*(u„uh\u,rl)=U-K+A-C1-C2 (4) 

and may be recognized as a time-dependent version of the 
functional used in Washizu's generalization. We now seek to 
determine conditions under which the time integral of the 
modified Lagrangian function assumes a stationary value 
with all 21 arguments of the integrand varied independently. 
If the trial functions, uh and the A,-, have sufficient continuity 
as to permit the necessary application of the divergence 
theorem, and if 

8u,(tl) = 8ui(t2) = 0 (5) 

we find the vanishing of the first variation necessitates that 

+ \< \v[~ X,w + P"i ~ Fi' 8u:dvdt 

+ ( M (VjXij-T^dUidSdt 

J / j <J Su 

+ \i
2
i\sJVj\ij-Ti*}&uidSdt 

- f 2 f [ui-uf}8TidSdt = 0 (6) 

We recognize from the first integral that the Lagrange 
multipliers Ay- have the physical interpretation of the com
ponents of stress in an elastic body, ay, and from the fourth 
that the T, have the physical interpretation of the components 
of traction, Th since the vj are the components of the normal 
vector at a point on the surface. Thus, three sets of Euler 
equations result 

arra" m v (7) 

<rUJ+Fi=Piii i n V (8) 
1 

eu = y ("/,; + "/,;) in v <9) 
and the necesary boundary conditions are seen to be 

Ti^vjoy on S = Su+Sa (10) 

T, = T,* on S„ (11) 

«,=«,•* on Su (12) 
Since these are the field equations and boundary conditions 

of elastodynamics, we conclude that the proposed extension is 
appropriate, whether it be viewed as a relaxation of the class 
of functions to be used with Hamilton's principle, or as an 
extension of Reissner's principle to other than simple har
monic motions. Equation (6), it should be noted, is included 
in the further generalization due to Yu [13]. This dynamic 
variational principle differs from that of Dean and Plass [14] 
in that 8H, need not vanish on Su. 

3 An Appropriate Method 

Our interest here, of course, is not in deriving once again 
the equations of elastodynamics, but rather in developing a 
procedure whereby approximate solutions can be obtained for 
otherwise intractable problems. To do this, we return to 
equation (6) and make use of the identification that the 
Lagrange multipliers are, in fact, stresses and tractions. 

We are interested in the class of problems for which a 
number of solutions to the field equations are readily ob
tained, but for which difficulties arise in obtaining solutions 
because of mixed boundary conditions. We assume that a 
large number, N, of systems of stresses, &y, and 
displacements, u", can be found, and that each system 
satisfies equation (7)-(9). We then take as trial functions the 
superpositions of such solutions, or 

N 

°ijW)=Ydan<jif(x,t) (13) 
n = \ 

and 
N 

ui(x<t)=T/a^i'(x,t) (14) 

Every such trial function will also satisfy the field equations. 
Tractions, Th may be constructed from these stresses so as to 
satisfy equation (10) on each point of S. 

For such trial functions, the variational principle leads to 
the requirement that 

( 2 [ (Ti-T,*)8UidSdt-\'2 [ (ui-ui*)8TidSdt = 0 
<J t\ J Sa J /j J Su 

(15) 

We propose to construct an algorithm for determining the set 
of coefficients a„ which, for any N selected, leads to the best 
approximate solution in the form of equations (13) and (14). 
The most general arbitrary variation within the space spanned 
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by these N solutions may also be written as an expansion of 
these same Absolutions, or 

- • •x 

N 

m = \ 

N 

&*,= E fam«/"(jf.o 

(16) 

(17) 
;n=l 

Substituting these equations and (13) and (14) into equation 
(15) leads to a single equation. Since the variation must be 
arbitrary, however, any convenient choice of coefficients, 
ba,„, may be made. It is particularly convenient to make the 
selection: 

6a„, = 0 for m*p, m = \,N (18) 

ba,„ = \ for m=p, p=\,N (19) 

so as to obtain a system of N equations for the N coefficients 
a„,or 

XJfl»[,'2f[< wruwsA upv^/dsidt 
(20) 

=\'2ALT^Pds-Lu^^ds\dt 

For any given boundary conditions, T* and u,*, and for any 
selected set of solutions to the field equations, the a„ may be 
found and the approximate solution determined. It has been 
previously found [15] that static problems with mixed 
boundary conditions may be successfully treated in a similar 
manner. 

The procedure may be applied to construct an approximate 
steady-state response to a prescribed boundary excitation 

Ti* = 6i*{s)cosQt on Sa (21) 

Uj* = US (s)cos Qt on Su (22) 

We require Absolutions to the field equations, of the form 

au"=Syn(tt,\)cosQt (23) 

w," = {/,"( Q,x)cos Qt (24) 

Substituting these into equation (24) yields a system of linear 
algebraic equations of the form 

where 

and 

%a„C„p(Q)=Pp (25) 

C„P=L »jSJ,UrdS-\ Ul'vjS/dS (26) 

Pp=\ e,*UfdS-\ U,*vjS/dS (27) 

The time integrals have been eliminated from equation (20) 
since the equations must be satisfied at every instant. For 
S„ = 0, this procedure reduces to one previously used to 
determine the response of an elastic strip to a time-harmonic 
end loading [16]. 

An approximate solution for the free vibration of an elastic 
solid with homogeneous boundary conditions may be found 
by setting to zero the starred quantities. A set of homogeneous 
algebraic equations results and estimates of natural 
frequencies arise from finding values of A that cause 

det(Cw) = 0 (28) 

Corresponding mode shapes may be determined by returning 

Fig. 1 

VS7 vnz 

Sign convention for boundary element 

the resulting value of Q to equation (25) and computing ratios 
of coefficients. 

We have now completed the development of a procedure 
whereby approximations to the forced response of elastic 
solids to time-harmonic boundary excitations may be ob
tained. Approximations to the natural frequencies and the 
corresponding mode shapes may also be developed, even for 
objects of complex geometry. If the available set of solutions 
can be shown to be complete, convergence to an exact answer 
is to be expected in both cases. If the available set of solutions 
is merely "large," only an approximation can be anticipated. 

4 Application to the Vibration of Plates 

For the thin, elastic plate the tractions and displacements of 
equation (15) must be replaced by the moments, forces, 
displacement, and rotation at the boundary. Recognizing the 
presence of virtual work and complementary virtual work in 
equation (15), we write 

i l l { - (M„„ -M*m )8p+(Qnz-Q*z)5w)ds dt 

- \ ' 2 \ l-U3-l3*)&M„n + (w-w*)5Qnz]dsdt = 0 (29) 

The integration path is the line formed by the intersection of 
the plate edge and midplane. Sign conventions are as given in 
Fig. 1. The resultant moment and force per unit length are 

- s 
-A/2 
A/2 

Tzdz 

Tzdz 

Qnz=Vnz + ys(S.M„) 

The transverse displacement is w, and the rotation, 

dw 

dn 

(30) 

(31) 

(32) 

(33) 

(34) 

Here 5 and h are the unit tangent and normal vectors at the 
boundary. The displacement, w, must satisfy the equation for 
a vibrating plate with distributed load, q, 
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Dv*w + p w = q (35) 

where p is the areal density, h is the thickness, E the modulus, 
and v the Poisson's ratio for the plate. 

Eh3 

(36) D--
12(1 -v2) 

and 

M„ 

M„, 

Mv, 
f/l/2 

J -h/: 

zaxxdz = -D(wxx + v\Vyy) 

zoyydz=-D( wyy + vwxx) 

zaxydz= -D(\ + v)wx 

(37) 

(38) 

(39) 

If a number of solutions to equation (35) may be found, we let 

w(x,y,t)=apW
p(x,y) cos cot (40) 

and compute Mnn, |3, and Qnz. The variations are then written 
in terms of these same solutions and coefficients chosen in the 
manner of the preceding section. 

Equation (26) becomes 

- L l-M&F + Q&Wlds 

-p>M%, + WQ«„)ds 

(41) 

As co appears as a parameter in each displacement, rotation, 
moment, and force, the vanishing of det ( Q provides a 
transcendental relationship for natural frequencies. 

5 Example 

As a demonstration of the procedure, we consider the free 
vibration of a complete circular plate of radius a, having a 
portion ( - a / 2 < d < a/2) of the boundary free, and the 
remainder clamped, as in Fig. 2. The method we have 
developed requires the prior knowledge of a set of solutions to 
be field equation(s). Such a set is easily obtained for the free 
vibration of a thin plate, in the form 

'(r,6,t) = J ] W(r,0) cos Qt (42) 
P=\ 

where fi is one of the natural frequencies (to be determined), 
and 

N N 
w(r,6) =Y,WP cosP0= D [ApJp(Kr) 

p=i P=I 

+BpIp(Kr)]cospd (43) 

Such functions are appropriate for modes symmetric about a 
diameter bisecting the free portion of the boundary. For the 
antisymmetric modes, which will not be considered here, the 
replacement of cos pQ by sinpd is required. Here JP and IP are 
the Bessel functions and modified Bessel functions of the first 
kind and order p, respectively. The parameter K, which is to 
be determined, is related to the natural frequency, plate 
density, and thickness, through 

K4=pU2/D (44) 

For a completely clamped plate, the boundary conditions 
can be satisfied by any one term of the series given by 
equation (43), leading to the well-known equation for the 

Fig. 2 Circular plate with mixed boundary conditions 

natural frequencies of the completely clamped circular plate 
[1]. For a plate with a free edge, the boundary conditions may 
also be satisfied by a single term. The first several eigenvalues 
have been tabulated [1]. 

For the problem at hand, however, no single term of 
equation (43) can satisfy the mixed boundary conditions. We 
may, however, apply the algorithm developed so as to 
determine the coefficients Ap and Bp which are required for 
the satisfaction of equation (29). Since this condition is 
necessary for the satisfaction of the modified form of 
Hamilton's Principle, we may argue that the resulting sets of 
coefficients, and the corresponding eigenvalues, are the best, 
in some sense, which can be obtained by approximating the 
desired boundary conditions with ./V functions of the form 
chosen. 

At the boundary of a circular plate, 

«»M 
f d2w / 1 1 dw 1 d2w 

dr 
• + -

de2 ) ) 

Vnz=-D—V2w 
or 

(45) 

(46) 

9 / 1 dw \ 
s.MK=M„—W - „ _ ( - _ ) (47) 

Substituting into equation (29), setting to zero the 
prescribed stress resultants and displacements, and 
eliminating the temporal dependence through integration, 
yields 

•"/2rd2W v oW v d2W~) (dW~) 
+ r - + -id/2 r 

dr2 r dr r2 3d2 

f » » f S 

'Jo U V W+ 
(\-v) a2 

r dddr 

b2W\ v bW v a2W 

1 f 1 
J r=a (. dr J r=a 

(48) 
("• Cd2WV v dW v dLW~\ CdW^i 

Ja/2 Idr r dddr\ r dd)r=al ir~a 
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Fig. 3 Natural frequencies of circular plates having partially free, and 
partially clamped boundaries 
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Fig. 4 Comparison of experimental and theoretical determinations of 
the natural frequencies of plates with mixed boundary conditions 

Substituting the expansion for the displacement and for the 
variation leads to a system of 2iV equations for TV values of Ap 
and lvalues of Bp. We choose 5 Bp = 0 and SAP = 0 for/7 
^ q, bAq = 1 forp = q to produce N equations of the form 

N 

£ (Ap Cpq + BpDpq) = 0, q=l,N (49) 

and SAP = 0, 5 Bp = 0 for p * q, 5 Bp = 1 for p = q to 
produce a second set of iVequations. 

square array of coefficients, the determinant of which must 
vanish. For each value of K (defined through equation (44)) 
that causes the determinant to vanish, we may find a natural 
frequency of the plate. 

Although tedious, the implementation of this process is 
straightforward. A computer program was written which 
evaluates the elements and determinants of the array for a 
trial value of frequency. The value of frequency was then 
incremented until the determinant changed sign. The search 
direction was then reversed, a smaller increment used, and the 
process repeated until the desired accuracy was obtained. 
Once an acceptable estimate of the natural frequency had 
been formed, the coefficients were evaluated, and the 
displacements and force resultants evaluated on the boundary 
so that the approximation to the boundary condition could be 
verified. 

Results obtained with TV = 24 are presented in Fig. 3. In the 
course of obtaining solutions for a plate free on - a/2 < 9 < 
a/2 and clamped on the remainder, one also finds the 
frequencies of the plate clamped on - a/2 < 6 < a/2 and 
free on the remainder. At any a, then, two sets of frequencies 
are found: those for a free edge angle a ' =a, and those for a 
free edge angle a" = 2ir — a. The mode shape must be 
evaluated to determine which type of mode has been iden
tified. 

The circular plate with these mixed boundary conditions 
has been considered in four other investigations. Hemmig [17] 
conducted a series of experiments on steel plates with edges 
partially free and partially clamped. Some of his experimental 
results are given in Fig. 4. Eastep [18] used a finite element 
method (NASTRAN) to determine natural frequencies for 
this same problem, with results as shown on the Figure. One 
hundred forty-four trapezoidal and 24 triangular elements 
with a total of 1944 degrees of freedom were used to model 
the plate. Results of the present study were computed at 15 
deg increments of the edge angle but are shown as solid lines. 
Expansions of up to 48 terms (7V= 24) were employed. 

Comparison of these three sets of results suggests that the 
usual difficulty in experimentally achieving a rigid clamping 
may have been encountered. For many values of a, the 
agreement between results obtained with the present method 
and those obtained with NASTRAN is quite good, but some 
discrepancy is noted for those values of a where the frequency 
is particularly sensitive to the clamping length. The results 
suggest, but certainly cannot be taken to demonstrate, that the 
present method leads to lower bounds. A similar trend has 
been noted [19] in results obtained for membranes with mixed 
edge conditions. 

In an earlier work, Chen and Pickett [4] used a super
position of functions satisfying the differential equation with 
the coefficients being determined so as to minimize boundary 
error through least squares. These results differ significantly 
from all results published since that time. 

The results obtained by Hirano and Okazaki [5] for the first 
mode, and confirmed by experiment, appear to lie slightly 
above the present results. Vivoli and Filippi [6] obtained 
experimental and theoretical results for the first four modes at 
two values of free-edge angles. With the exception of their 
value for the second symmetric mode of the quarter clamped 
plate, which was significantly higher than that obtained here, 
the agreement is satisfactory, as shown in Fig. 3. Finally, 
Narita and Leissa [7] have compared the present results with 
some results obtained by a Fourier series technique and found 
agreement between the two methods to be within a few 
percent, with the present results being slightly lower. 

D (ApEPQ+BpFpq)=0, q=\,N. (50) 
p = i 

Writing these as a single matrix equation leads to a 2/V 

Summary 

A procedure for determining the dynamic response of 
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elastic structures by superposing functions that satisfy the 
differential equation of motion but not the boundary con
ditions has been developed. An algorithm for determining the 
necessary coefficients is developed from a modified form of 
Hamilton's principle. The application to an elastic system 
with a discontinuous boundary condition was demonstrated 
by considering the elastic plate, partially free and partially 
clamped. Numerical results for the first several modes were 
compared with available experiment, and results obtained by 
other methods with satisfactory agreement. 
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Nonlinear Vibration of Thin Elastic 
Plates 
Part 1: Generalized Incremental Hamilton's 
Principle and Element Formulation 
The finite element method has been widely used for analyzing nonlinear problems, 
but it is surprising that so far only a few papers have been devoted to nonlinear 
periodic structural vibrations. In Part 1 of this paper, a generalized incremental 
Hamilton's principle for nonlinear periodic vibrations of thin elastic plates is 
presented. This principle is particularly suitable for the formulation of finite 
elements and finite strips in geometrically nonlinear plate problems due to the fact 
that the nonlinear parts of inplane stress resultants are functions subject to 
variation and that the Kirchhoff assumption is included as part of its Euler 
equations. Following a general formulation method given in this paper, a simple 
triangular incremental modified Discrete Kirchhoff Theory (DKT) plate element 
with 15 stretching and bending nodal displacements is derived. The accuracy of this 
element is demonstrated via some typical examples of nonlinear bending and 
frequency response of free vibrations. Comparisons with previous results are also 
made. In Part 2 of this paper, this incremental element is applied to the com
putation of complicated frequency responses of plates with existence of internal 
resonance and very interesting seminumerical results are obtained. 

Introduction 

A systematic computer method for nonlinear structural 
vibrations was developed by the authors in a series of recent 
papers. This new approach is essentially the incremental 
harmonic balance method associated with finite element or 
Rayleigh-Ritz procedures in the time-space domain [1]. So 
far, some beam problems have been treated successfully in 
[2], and efforts were made to investigate the large-amplitude 
vibrations of plates in [3], where some simple examples were 
computed. 

The most significant features of this new approach are that 
(i) it is not subjected to the limitation of weak nonlinearity 
and (/'(') it can give the periodic solutions directly with any 
desired accuracy. In fact, for an undamped system, the 
periodic solutions cannot be obtained by direct integration 
because the initial conditions are not known beforehand; 
whereas for a damped system, the integration must be carried 
out over a sufficient number of periods so that the transient 
process due to the assumed initial conditions can be damped 
out and a steady-state periodic solution is reached. 
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The finite element method has been widely used to analyze 
nonlinear problems, but it is surprising that so far only a few 
papers have been devoted to nonlinear periodic vibrations. 
The first attempt to apply finite element method in large 
amplitude vibration is due to Chuh Mei [4, 5]. Later, Rao and 
Raju [6, 7] presented a simple finite element formulation in 
which the inplane displacements are assumed to be zero over 
the whole plate. Based on the same assumptions, 
Narayanaswanai and Rao [8] used a higher-order triangular 
element and treated free vibration of plates of arbitrary 
shape. Reddy [9] developed a mixed element and a penalty 
element, with which he calculated some nonlinear free 
vibration problems of plate using similar simplifications. 
Unfortunately, the scope of applicability of the foregoing 
finite elements are restricted to a certain extent because of the 
use of such assumptions and the dropping of higher harmonic 
terms. 

The harmonic terms other than the fundamental one are 
necessary for fully revealing the behavior of nonlinear 
vibrations, such as the super/subharmonic and internal 
resonances, etc. However, it is indeed extremely difficult to 
include these terms without using an incremental formulation 
proposed in the present paper. 

In this paper, a special variational principle for large 
deflection theory of thin plates is given, which is a 
generalization of its linear counterpart first published in [10], 
and which can be found in a text by Hu [11]. Based on this 
variational principle, a generalized incremental Hamilton's 

Journal of Applied Mechanics DECEMBER 1984, Vol. 51 /837 

Copyright © 1984 by ASME
Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



principle is developed. Since the Kirchhoff's assumption 
forms part of its Euler equations, the principle can be taken as 
a firm basis for formulating the DKT-type incremental 
element. A second special feature of this principle is that the 
nonlinear part of the inplane stress resultants are independent 
functions subject to variation; hence they can be properly 
chosen in line with the order of approximation of the inplane 
displacement interpolation and, as a result, the formulation 
of nonlinear terms in finite element/strip or Rayleigh-Ritz 
procedure can be greatly simplified. This fact is of great 
significance in reducing computation effort, as the nonlinear 
terms have to be formed repeatedly in nonlinear numerical 
analysis. 

Based on the incremental Hamilton's principle, an in
cremental triangular element of thin plate is derived. This 
element is simple and effective, and all the matrices have been 
worked out in explicit and compact forms. The accuracy of 
this element is demonstrated via typical examples of bending 
and free vibrations with large deflections. 

In Part 2 of this paper, the amplitude incremental plate 
element is applied to complicated nonlinear frequency 
responses of free and forced vibrations characterized with 
existence of internal resonance. Some very interesting results 
obtained here are believed to have appeared for the first time 
in literature, to the best knowledge of the authors. 

Generalized Incremental Hamilton's Principle 

Consider firstly a special variational principle for large 
deflection theory of thin elastic plates in the form 

&{\\AVMe}T[Dp\{e} + Vi[e}T{Dp\[A\{e} + Vi{Sn)
T[A]{e) 

- Vi[Sn]
T[Dp] ~' (S„ ) + Vi (X) T[Db\{X) 

+ {y}T[Q)-id}T{g)]dA 

\ c (pxu+pyv)ds]) =0 

where (see Fig. 1) 

[ d] = [u,v,w]T = displacement vector 
i/x,\l/y = rotation components of the normal-to-the-middle 

plane in x,y coordinate system 
Etui's - rotation components of the normal-to-the-middle 

plane in n,s coordinate system 

{0} = 

[A] 

[" dw dw ~\T 

l~dx~'~dy~\ 

dw 
0 dx 

dw 

dw 

~w 
dw 

~~dx 

(6) 

(7) 

Mns = twisting moment along the boundary 

14) 
-[Qx> QyV ~ transverse shear force vector 
= [Qx< Qy> Qz\T = load intensity vector 
= [S,lx, S„y, SnXy]T = the nonlinear part of the inplane 

stress resultant vector due to deflection. 

»>>-& 

[Db] = 
Eh3 

12(1 - v2) 

1 

V 

0 

1 

V 

0 

V 

1 

0 

V 

1 

0 

0 

0 
1 - c 

2 J 

0 

0 
\-v 

(8) 

(9) 

E = Young's modulus; v = Poisson's ratio; h = thickness of 
plate; M„ = bending moment prescribed along the boundary 
CM', R„ = the equivalent shear force prescribed along the 
boundary CR; px, py = the inplane resultants prescribed 
along the boundary Cp; A = the middle plane of the plate; 
and C = the boundary of the plate. 

In this variational equation, u, v, w, \j/x, ipy are independent 
(1) kinematically permissible functions; Snx, S„y, SnXy, Qx, Q y 

and Mns are also independent functions, and their variations 
are free of any restriction. Carrying out the variation and 
integrating by parts, it is easy to transform equation (1) to the 
following form 

J J A I \ dx 

dSx dSCv \ 
8u-

'dSXy 

• dx 
ds; \ 

l,m 

(7) 

Is = 

I rri 

-m I 
(2) 

= directional cosine of the normal to the boundary in 
the middle plane 

= transverse shear strain vector 

(7) = [ 
dw 

•lk>-
dw -*,r (3) 

dw 
\ps = transverse shear strain along the boundary 

ds 

= curvature strain vector 

, , [ Hx d\Py (d^y d\l/x\l 
[X] = [- -d^'-^'-\lx- + -^)\ 

= linear part of the inplane strain vector 

(e) = 
V du 3i) ' 9u du 1 T 

L dx ' dy ' dx dy J 

(4) 

(5) 

+ 5iS„)r(>A{A]{d)-[Dp]-i[Sn}) 

( 
dMr dMx, 

• + -Qx)wx dx dy 

„ dw dw 
+ SX-—+SX x dx dy ) 

d / _ dw dw 
i + 6 v V — l-iSv (e, )+«J 8w 

dy \~y v dx y dy 

+ (^r-iy)dQy+(-^r-ty)8Qy}dA 

- \ c [(^-4<))bMns + {Mm-(My-Mx)lm 
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1> „ dw dw 
4'• x " & r 

fife 

+ 5 , , - — ) m + 
a.v 

<nr,)'+(Q-

— R„ \Sw ds 

dw 

as 

+ (Sxyl+S'ym~py)8v] ds = 0 

\ (Mn-M„)bt„ds+\ [(Sxl+Sxym-px)8u 
ICM JCp 

(10) 

where 

[Sx,S;,S;,]r=[Dp]({e} + Vz[A][d)) 

[Sx,Sy,Sxy}
T=[Dp]{e)+{Sn] 

[Mx,My,MXy]T = [Db]{X} 

(11) 

(12) 

iy,ir±xyi — L^fiJ lA) (13) 

Here Sx, Sy, and S^, are also the total inplane stress resultants 
but expressed in terms of displacements. They will coincide 
with the inplane stress resultants Sx, Sy, and Sxy, respectively, 
if the relation (S„ j = 1/2 [A] [6] is satisfied (see equation 
(14)). 

It can be seen from equation (10) that owing to the ar
bitrariness of the variations, equation (1) is equivalent to the 
following conditions: 

(a) All equilibrium equations in terms of independent 
functions listed in the foregoing. 

(ft) The relationship between {S„} and deflection: 

lS„)=[Dp]Vi[A)ld} (14) 

yl'x=—^r' ^yz 

(c) Kirchhoff assumption of 

dw dw 

~dT' ^ = ^i 
together with 

dw 
\ps=—— and Mns=(My-Mx)lm-Mxy(l

2-m2) on 
as 

boundary. (15) 

(rf) All force boundary conditions on the corresponding 
boundaries CR, CM, and Cp. 

This special variational principle is particularly suitable for 
the formulation of geometrically nonlinear plate element. The 
main advantages are twofold: 

(0 Since the Kirchhoff assumption forms part of its Euler 
equation, this variational principle will be helpful for over
coming the well-known difficulty in thin-plate element for
mulation. 

(/'0 The nonlinear part of the inplane stress resultants 
(Sn ) appears in equation (1) as independent functions subject 
to variation, so it is possible to interpolate (S„} in the same 
form as [.Dp](el so as to be consistent in the order of ap
proximation between the two terms in the expression of in-
plane stress resultants given by equation (12). As a result of 
this, it can be seen that the second and third terms in the area 
integral of equation (1), which produce the nonlinear parts of 
stiffness matrix, will be reduced to a similar form. 

Referring to equation (1), a corresponding Hamilton's 
principle for periodic vibration can be written as 

4cT [\\[Vz{e]T[Dp][el + Vl[e]T[DP][A][6] 

+ ViiSn\
T[A\{e) 

VASn\
T[Dp]~i[Sn} + V2{x)T[Db}{x) + [y)T{Q) 

{d)T{q)-i/2Phw2 — ^ — J 
dr br 

dA 

•\cysMnsdsj dr=0 (16) 

where T = wt = dimensionless time, w = frequency of 
vibration, t = time, p = density. In equation (16), some 
boundary integrals have been dropped because they are not 
essential for element formulation and, moreover, can be 
regarded as having been combined into the terms (d)T{a} by 
using generalized functions. The inplane inertia is taken into 
account but rotary inertia are neglected. 

Assuming that a state of vibration denoted by (d(0)) 
co0 is given, the neighboring state can then be expressed by 
adding the corresponding increments onto them as follows 

[d) = [d^} + {Ad} 

a; = coo + Ao) 

(17) 

where A( ) denotes the increment of corresponding quantity. 
Applying the same procedure as used in [1], a generalized 

incremental Hamilton's principle for periodic vibration of 
thin elastic plates is obtained in the form 

\J[\\A8{Ae}TlDp]{Ae)dA + ^AmAx}TlDb]{Ax) 

+ 5(iAy}T{AQ})]dA-\jc5(AysAMns)ds 

+ \\A[5({Ae)T[Dp][A«»][Ad}) 

+ 8{Ad}T([AA]T{S^}+[A^]T[ASn})]dA 

-\j\jAPu1
2
lh5[Ad}T[Ad)dA 

- j j ^ 2Acca0ph8[Ad}T{ d™}dA 

- \ \ A 8[Ad}T[Aq}dA + \\A [8{Ae)T[Dp]{{^} 

+ Vi[A^]{ 0<°>)) + 8{ A6] rH<0>](S<°>) 

+ 8iAX}T[Db]{xm}+8{Ay}TiQM}+8{AQ}T{yM} 

-Po>2
0h8{Ad}T[d^}-8{Ad}T{q^)]dA 

- j c (8AysMl$ + 8AMmyW)ds}dT=0 (18a) 

\2J\\A6[ASH}T(UlAM]lfia>}-[Dp]-1{SV>})dAdT=0 

(18ft) 

j * * j J^ 8{ ASn ] r(H<°>][ A6) - [Dp] ' [ AS„) )dA dr=0 

where 

(S<°>)=[D„]{e<0>) + ( S f ) 

(18c) 

(19) 
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and (Sj,0)) as well as (AS„) can be expressed in terms of 
displacement parameters by equations (18ft, c). The last two 
integrals in equation (18a) are retained to give corrective terms 
for preventing the solution from drifting away during in
crementation. Since it has the same form as equation (1), the 
corrective term will vanish if the preceding solution is exact. 

General Formulation of Incremental Thin Plate 
Element 

In this section, based on the generalized incremental 
Hamilton's principle, a fairly general formulation of in
cremental element for large deflection of thin plates is 
presented. 

For modified DKT element, the displacement functions can 
be generally assumed to be written in the form 

1} 
w 

2xm rnxl 
= [Np] [p] 

l x n nxl 
= IN„] (ft) 

2x1 Ixn n x l 
• = INJ [71 [b] 

(20) 

(21«) 

(21ft) 

where [p] and (ft) are stretching and bending nodal 
displacement vectors with m and n components, respectively, 
Wp\, [Nb], and [N^] are corresponding shape function 

lxn 
matrices, [T ] is a transformation matrix derived from 
the condition 7., = 0 along the element boundary, and some 
other necessary restrictions imposed on the rotations i/-*, \f/y. 
The integer / is greater than n by a number of restraint con
ditions connecting \px, \}/y with the vector (ft). 

From equations (19)-(21), the following formulas can be 
derived by equations (3)-(6): 

[y)=[By][b) (22) 

ix)=lBb][7][b) (23) 

(24) 

(25) 

U)=[Bp][p) 

ie) = [[Nbx]
T[Nby]

T]r[b} 

where 

[Nbx] = d[Nb]/dx, [Nby]=b[Nb]/dy 

[A] = 

byl 

[b)T[Nbx]
T 0 

[b)T[Nby}
T 

[b}T[NbyY 

[b)T[NbxV 

(26) 

[A^]{Ad) = 

[b^}T[Gx] 

[b^)T[Gy] 

[b^)T[Gxy] 

[Aft) (27) 

in which [Gx], [Gy], and [Gxy] are symmetric matrices 
nxn 

[Gx] = [Nbx]
T[Nbx], 

Jxy\ 
nxn 
[Gy] = [Nby]

T[Nby] 
(28) 

[Gxy] = [Nbx]
 T[Nby] + [Nby]

 T[Nbx] 

Using the following equilibrium (Euler equations of the 
principle) 

Q* 
bMr dMx. 

• + Qy = 
bMxv dMv (29) 

bx ' by ' *y~ bx ' by 

and equation (13), the transverse shear force can be expressed 
in terms of vector (ft) in the form 

2 x / 2 x / lxn nxl 
IQ)=[CQ] [71 (ft) (30) 

The linear part of the inplane stress resultant is denoted by 
iS,\, 

{S,} =[S,x,Sly,Slxy]
T=[Dp][Bp][p) (31) 

In finite element formulation, the nonlinear part (S„) 
expressed by equation (14) usually has significantly higher-
order interpolation than that of (5 / ) . It obviously serves no 
purpose. Using the present variational principle, it is possible 
and expedient to interpolate (S„ } in the same form as that for 
(S/) , i .e . , 

{S„)=[Dp][Bp]{f} (32) 

The vectors ( /0 )) and its increment vector, being internal 
parameters, can be determined by using equations (18ft,c) 
(25)-(28), and (33) as follows 

w x l mxm mxn nxl 
l/0)) =[KpV

uMKd
pd] (ft<°») 

mx 1 mxm mxn nxl 
(A/) =\KPVX [Kd

pd] (Aft) 

mxm c r 
[Kp] =\\A [Bp]

TlDp][Bp]dA 

l ^ d ] = S L [BP]T[DP]T 

andAe denotes the area of the element. 
Now, inserting all the related expressions into equation 

(18a), the element contributions are obtained: 

4 

ft(0))r [Gx] ' 

b™)T [Gy] 

b^V [Gxy] _ 

(33) 

(34) 

(35) 

dA (36) 

{A) Matrix Contributions 

D{ •2T f{Ap)^l 

(Aft) J 

[Kp] [Kd
pd] 

[Kb] + [Ki] + [Ki] 

Ap) 

Aft) 
dr 

+ »°)o & 
( 4 P F | T 

(Aft 

[Mp] [0] 

[0] [Mb] 

Ap] 

Aft) 
dr (37) 

where [Kp] and [Kpd] have been given in equations (35) and 
(36), 

mxm f (• 
[Mp] = ] ) ^ Ph[Np]

T[Np]dA 

[Kb] =[TlT[E][T\ + [Kc]
T+[Kc] 

in which 

[Kc] =[T\T\\A [Q]T[By]dA, 

[E] = \\A [E] = \\A lBb]T[Db][B„]dA 

nxn r C 
[Mb] = J J ^ ph[Nb]

T[Nb]dA 

(38) 

(39) 

(40) 
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middle 
plane 

< w ^ n 

Fig. 1 Notations for plate displacements 

dw dw 
Fig. 2 Fifteen DOF incremental plate element, \bx = , it„ = — 

[Kt\ =[KUT\.KP\~x[Kk
pd\ (41) 

[KU =\\A (S^[Gx] + SfHGy] + S^lGxy])dA (42) 

in which, by equations (19), (31) and (32), 

[Sf ,S<?>,S<°>r = lDp][Bp]({p«»} + {/">)) 

(B) Right-Hand Vector Contributions: 

L(AZ)J ' 
(43) 

where 

f ^ ) =- [^ ] (P < 0 ) ) - 1 /2 [^ ] l f t ( 0 ) ) -co§[M p ] (p<°>) (44) 

"[Rb) = [ 2 < 0 ) ] - ( [ ^ ] + [^])l* ( 0 ))-co§[M6][^°») (45) 

"Ic1)) = j j ^ [N„]Tgf>dA (46) 
m x l e 

[Fp] =-2a)0[M /,]{p(°»] (47) 

K ) =-2a,o[Mp](6(0») (48) 

(AZ) = j j ^ [7V6] rA^d4 (49) 
It can be seen that, in this formulation, all the matrices 

arising from the nonlinear terms as well as the nonlinear 
inplane stress resultants [S„] etc. are expressed in terms of 
the elements of matrix \Kd

pd\. This fact greatly reduces the 
computing work in the evaluation of element matrices, 
because the nonlinear matrices have to be reformed in each 
incremental step or even for each iteration. 

In periodic vibration, the nodal parameters are all periodic 
functions of time and they are expanded into Fourier series 

[h\ = E Ib<)cosiV+ E Sbj)sinJT 
J=i 

1^1 = E (P,)cos/r+ E fP;)sinyV 
( = 0 y'=l 

(50) 

Consequently, the final nodal parameters of the element are 
composed of the Fourier coefficients of the displacement 
increments, i.e., the amplitude increments Afe,, Aph etc. 
Thus, this element is in fact a finite prism in the time-space 
domain. 

A Simple Incremental Triangular Thin Plate Element 

In this section, a simple incremental element for 
geometrically nonlinear problem of thin plate will be deduced. 
This element is a modified DKT triangular element with only 
five degrees of freedom of stretching and bending 
displacement increments at each of the three corner nodes 
(Fig. 2). The successful application of this element to some 
simple nonlinear plate vibration problems was presented 
recently in an international conference [3], but the element 
formulation was not based on a complete variational prin
ciple. Here, the element is rededuced from the present general 
formulation, and is thus now established on a firm theoretical 
basis. 

For this simple element, the nodal displacement vectors are 

<"-*••(-£),•(-£),••>•(-£).•(-£).• 
/ dw \ / dw \ 1 

dy 

ip}=[ul,vuu2,v2,u3,v3]
1 

(51) 

(52) 

2X6 
[Np] is the same as that for the constant plane stress element, 
1 x 9 2x12 
[Ni,], [A^] are the same as those for the DKT element [12, 
13] and with the same restrictions of 
(°) 7s = 0 on the element boundary, (b) \f/„ varies linearly 
along each edge, and the transformation matrix [7] is derived 
from these restrictions. In contrast with the DKT element 
[12], the transverse shear strains are calculated by equation 
(22) and Qx, Qy by equation (30). However, it should be noted 
that the Kirchhoff assumption will be satisfied on average 
within the element by the variational principle itself 
automatically, so it is actually a thin plate element. 

The element contributions are still expressed by equations 
(37)-(49), but the component matrices are greatly simplified 
as described in the following: 

(A) With these shape functions, [Bp] is a constant matrix 
and thus, instead of equation (35), the linear stretching 
stiffness matrix is simply expressed as 

(53) [Kp]=Ae[Bp]
T[Dp][Bp] 

(B) Equation (36) is simplified to 

[Kd
pd]=Ae[Bp]

T[Dp][Gb] 

where 

[Gb] = 

[b™}T[Gx] 

ib™}T[Gy] 

[b^)T[Gxy] j 

(54) 

(55) 

and 
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Table 1 Center deflection (w/h) of a simply supported square plate with immovable edges under uniform 
distributed load (Poisson's ratio = 0.3) 

qa* Present Reddy [9] 

Eh* 

1 
25 
50 

100 
150 
200 
250 

2 x 2 

0.04506 
0.6670 
0.9366 
1.2515 
1.4623 
1.6249 
1.7615 

4 x 4 

0.04458 
0.6726 
0.9487 
1.2705 
1.4848 
1.6510 
1.7892 

6 x 6 

0.04440 
0.6714 
0.9464 
1.2667 
1.4797 
1.6453 
1.7828 

8 x 8 

0.04433 
0.6708 
0.9455 
1.2653 
1.4780 
1.6432 
1.7804 

2 x 2 

0.663 
0.955 
1.319 
1.577 
1.785 
1.964 

4X4 

0.641 
0.912 
1.248 
1.484 
1.672 
1.833 

6 x 6 

0.635 
0.902 
1.230 
1.459 
1.642 

— 

Table 2 Center deflection (w/h) of a clamped 
uniform distributed load (Poisson's ratio = 0.3) 

4 
qa 
Eh* 2 x 2 4X4 

Present 

square 

6 x 6 

plate with immovable edges under 

8 x 8 
Reddy [9] 

6 x 6 

1 
25 
50 

100 
150 
200 
250 

0.01498 
0.3498 
0.6148 
0.9676 
1.2066 
1.3840 
1.5409 

0.01370 
0.3242 
0.5798 
0.9299 
1.1692 
1.3530 
1.5039 

0.01377 
0.3257 
0.5825 
0.9339 
1.1742 
1.3587 
1.5102 

0.01379 
0.3262 
0.5834 
0.9354 
1.1761 
1.3610 
1.5127 

0.324 
0.569 
0.900 
1.132 
1.316 
1.470 

[0*]=i\\AjG*]dAw=i\\Ae
[G>]dA' 

which can easily be integrated exactly. 

(56) 

( Q In this case, (S, J as well as {S„ ] are both reduced to 
constant over the element. According to equation (12), 
equations (33) and (34) together with equations (53) and (54), 
the inplane stress vector is expressed in the form 

{S<°>) = [ S}°>) + {S<°>) = [Dp]({ e<°>) + Vi[Gb] {ftO»)) (57) 

(D) By using these formulas (53)-(57), the other two 
matrices (equations (41), (42)) arising from the nonlinear 
terms can also be expressed in terms of [Gx], [Gy] and [Gxy], 
i.e., 

[Kt] = [Gb]
T[Dp][Gb] (58) 

[K%] = S f [Gx] + S f [Gy] + S<°> [Gxy] (59) 

where [Kb] is in fact the geometrical stiffness matrix in the 
current state. 

(£) The linear part of the bending stiffness [Kb], equation 
(39), is now reduced to that of the linear plate element of 
reference [10] and the explicit formulas are available in the 
Appendix of reference [3] in English. In paper [10], a factor c 
is introduced and thus the matrix [Kb] is written as 

[Kb] = mT[E\[T\ + c{[Kc]
T+[Kc]) (60) 

The stiffness [Kb] can then be adjusted by the factor c con
tinuously within a certain range and it is possible to improve 
the element performance further by choosing a proper value 
of c to balance the discrete Kirchhoff assumption error and 
discretization error. This point is similar to that of the Fried's 
C deg element, but it should be noted that the shear corrective 
term ([KC]T + [Kc]) is different. When c = 0, [Kb] is reduced 
to that of QQ3 or DKT element [12, 13]. When c = 1, 
equation (60) returns to equation (39) which is derived strictly 
in adherence to the variational principle proposed, or in other 
words, there is a theoretical value, i.e., c = 1. In paper [10], c 
— 0.4 is recommended according to a series of typical 
numerical experiments. 

CM 

rrJ 

S 

-b/2-

21 

-b/2-
5 

10 

15 

20 

25 

Fig. 3 Finite element mesh scheme 

(F) The mass matrix [Mp] and [Mb], equations (38) and 
(40) can easily be integrated exactly in the present case. 

Consequently, it can be seen that this incremental plate 
element is simple and in particular all the matrices arising 
from nonlinear terms as well as the inplane stresses etc. are 
expressed in terms of [Gx], [Gy], and [Gxy] which are just the 
geometrical stiffness matrices at the current state and can 
easily be integrated in explicit form. 

Numerical Examples 

To show the performance of the simple incremental 
triangular plate element, some test problems are investigated. 

Static Problems. The simply supported and clamped 
square plates subject to uniformly distributed load are taken 
as test examples. The convergence is demonstrated in Tables 1 
and 2. The center deflection w/h, computed with various 
element meshes, are listed in terms of the load factor 
qa*/Eh*, where a = length of plate edge, h = thickness of 
plate, and q = load intensity. The mesh scheme of a quarter 
plate is similar to that shown in Fig. 3. The available 
published numerical results obtained by Reddy [9] with 
penalty finite element (linear) are also given in these tables for 
comparison. 
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Table 3 Frequency ratio a/wn for simply supported square plate with immovable edges 

Center 
dimensionless 

amplitude 
Present 

(FEM4X4) 
Rao et al. [6] 
(FEM4x4) 

Reddy [9] 
(FEM 4x4) 

Chu-Herrmann [15] 
(perturbation) 

0.2 
0.4 
0.6 
0.8 
1.0 

1.0196 
1.0763 
1.1645 
1.2779 
1.4109 

1.0185 
1.0717 
1.1534 
1.2565 
1.3753 

1.0177 
1.0685 
1.1471 
1.2466 
1.3615 

1.0195 
1.0757 
1.1625 
1.2734 
1.4024 

Table 4 Frequency ratio w/o>n for clamped square plate 
with immovable edges 

Center 
dimensionless 

amplitude 

0.2 
0.4 
0.6 
0.8 
1.0 

Present 
(FEM 4x4) 

1.0073 
1.0291 
1.0648 
1.1138 
1.1762 

Rao et al. [6] 
(FEM 4x4) 

1.0071 
1.0278 
1.0611 
1.1053 
1.1588 

Reddy [9] 
(FEM 4x4) 

1.0062 
1.0245 
1.0540 
1.0934 
1.1411 

<N 

a 

— 
CO 

< 

It is worth pointing out that when the load is small, the 
center deflections approach the linear solution very ac
curately, for example, when qaA/Eh4 = 1. The analytical 
linear solutions are 0.04434 and 0.0138 for simply supported 
and clamped square plates, respectively. Usually, the solution 
does not converge monotonically, because the element is in 
fact a partially hybrid type. 

Free Vibration Problems. The fundamental frequency-
amplitude relationship of simply supported and clamped 
square plates with immovable edges were computed using a 4 
x 4 mesh. A procedure with a four-eigenvector-basis and a 
two-harmonic-approximation (cos cor, cos 3 tor for deflection 
and cos Ocor, cos 2wt for inplane displacements) for speeding 
up the numerical process as described in Part 2 [15] is applied. 
It means that the nodal deflections are expressed by equation 
(19) of Part 2. The results obtained together with the 
previously published ones are listed in Table 3. It can be seen 
that the present results are very close to the Chu-Herrmann's 
results, which are calculated by the perturbation method 
incorporated with elliptic integrals. The frequency ratios 
obtained by Rao et al. [6] and Reddy [9] with their own FEM 
however show similar differences. It may be because both use 
the same simplifications of assuming the inplane 
displacements to be zero over the whole middle plane of the 
plate and also only one harmonic term is retained in the 
formulation. Table 4 gives similar results for a clamped 
square plate. 

It is interesting to note that a weak interaction developed 
between the fundamental mode (corresponding to oiu) and the 
higher modes (corresponding to the frequencies co13 and co31, 
see Part 2 for the meaning of these notations). This 
phenomenon can be revealed by carefully examining the third 
harmonic vibration shape of the plate. Figure 4 gives the third 
harmonic dimensionless amplitude variation (denoted by 
A3(x,y)), in which curve 1 is for co/con = 1.3850, Aci = 
0.9467; curve 2 co/con = 2.0399, Acl = 1.734, curve 3 u/wu 
= 2.3690, Acl = 2.095, where Acl is the first harmonic 
dimensionless amplitude at plate center (refer to equation (20) 
of Part 2). When the total amplitude is small, the third 
harmonic term is very small in comparison with the first 
harmonic term (i.e. Ac3 < < Aci) and, at the same time, the 
fundamental mode shape constitutes dominantly in both 
harmonic terms. But with the increase in amplitude, the o>13 
and w3i-mode shapes grow gradually and become the 
dominant components in the third harmonic terms as clearly 
shown in this figure. This fact tells us that the co13 and co31-
mode shapes are excited by the first harmonic term to some 
extent but not yet to a state of strong internal resonance. 

0.00 

•0.05 

-0.10 

Fig. 4 Third harmonic dimensionless amplitude variation A$ along 
the center line y = a/2 for simply supported square plate with im
movable edges 

In Part 2 of this paper, the phenomenon of strong internal 
resonance of plate will be investigated. 

Concluding Remarks 

In nonlinear finite element analysis, the reduction in the 
formulation work is of crucial importance, and the 
development of simple and reliable elements with strong 
convergent characteristics have attracted research workers' 
attention again in recent years. The generalized incremental 
Hamilton's principle presented in this paper enables the 
authors to interpolate the stretching stresses of linear and 
nonlinear parts in the same pattern, which leads to a 
significant simplification of the formulation of nonlinear 
terms, but with little loss of precision. This fact is of great 
significance in reducing the amount of computing work, 
because the nonlinear terms are required to be renewed at each 
step during incrementation or iteration. Moreover, this 
simplification procedure can be extended to general structural 
systems. 

The finite element presented here does not require the 
introduction of any additional assumption to violate the 
original theory, therefore the numerical results obtained can 
be expected to approach the exact solution with the increasing 
number of elements and harmonic terms. 
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It is worth emphasizing that the present variational prin
ciples, equations (1) and (18a-c), are of the mixed type 
because of the inclusion of shear forces Qx, Qy, and twist M„s 
as functions subjected to. variation. Thus, the element 
proposed in this paper can be regarded as a partially hybrid 
type due to the elimination of force parameters such as Qx 
and Qy by equilibrium equations (equation (29)) in the for
mulation. 
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Nonlinear Vibration of Thin Elastic 
Plates 
Part 2: Internal Resonance by Amplitude-
Incremental Finite Element 
The simple amplitude-incremental triangular plate element derived in Part 1 of this 
paper is applied to treat the large-amplitude periodic vibrations of thin elastic plates 
with existence of internal resonance. A simply supported rectangular plate with 
immovable edges (b/a = 1.5) and having linear frequencies o>13 = 3.45 o>n is 
selected as a typical example. The frequency response of free vibration as well as 
forced vibration under harmonic excitation are computed. To the best knowledge of 
the authors, these very interesting results for such plate problems have not appeared 
in literature previously. Some special considerations to simplify and to speed up the 
numerical process are also discussed. 

1 Introduction 
In Part 2 of this paper, the amplitude-incremental 

triangular plate element developed in Part 1 [1] (see Fig. 2 of 
Part 1) is applied to study the periodic vibrations of thin 
elastic plates with existence of internal resonance. The 
frequency response of free vibration as well as forced 
vibration under harmonic excitation are considered. Under 
the influence of internal resonance, the frequency response 
becomes very intricate. Up to the present, only a few papers 
are devoted to nonlinear plate vibrations in which internal 
resonance have been taken into account. Sridhar, Mook, and 
Nayfeh [2, 3] treated circular plates and Lobitz, Nayfeh, and 
Mook [4] dealt with elliptic plates by multiple time scales 
perturbation method. As is well known, the perturbation 
method is only capable of treating problems with weak 
nonlinearity and becomes very cumbersome when used to 
calculate higher-order approximations. The present am
plitude-incremental method is the most suitable numerical 
approach capable of tracing very complicated frequency 
response curves. Moreover, it can give a solution with any 
desired accuracy, albeit at the cost of increased computer 
time. Strictly speaking, the present method is a seminumerical 
approach, because it is analytical in time (by expanding in 
Fourier series) and numerical in space (by using finite element 
method). Therefore, it should be an economic tool for 
periodic vibration problem in the same way as the finite strip 
method is good for many stress analysis problems. 
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However, to cope with such a complicated problem, some 
special considerations to simplify and to speed up the 
numerical process are needed. Some remarks on this problem 
are given in Section 2 of this paper. 

A simply supported rectangular plate with aspect ratio b/a 
= 1.5 is chosen as a typical example, of which the linear 
frequency u13 is slightly larger than three times the fun
damental frequency con and therefore, internal resonance 
may occur with increasing amplitude. A number of interesting 
results including the forced vibrations under the influence of 
internal resonance are obtained. Finally, some discussions 
concerning the internal resonance phenomena and the 
features of this new approach are discussed. 

2 Remarks on Numerical Procedure 

In Section 2 and Part 1 of this paper [1], some techniques 
for simplifying the formulation have been introduced. 
However, for a very complicated problem such as nonlinear 
plate vibration with internal resonance, it is obvious that 
other techniques for speeding up and simplifying the 
numerical procedure should also be incorporated, and some 
remarks on the computation procedure used in this paper are 
given in the following: 

1. To achieve high efficiency, a reduced basis consisting 
of linear eigenvectors for the same problem is used in place of 
the nodal parameters for bending, although the inplane nodal 
displacements are left unchanged in view of the flexibility in 
satisfying various inplane boundary constraints more ac
curately. The eigenvectors can easily be computed by using 
the subspace iteration method with the corresponding linear 
modified DKT plate element, and with the same element 
mesh. The necessary matrix and vector transformations are 
carried out at the element level. Thus the displacement vector 
for an element is written as 

Journal of Applied Mechanics DECEMBER 1984, Vol. 51/845 

Copyright © 1984 by ASME
Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



{d} = [{P)TAc)T]T (1) 

where (p) denotes the inplane nodal displacement vector 

[p)=lUl,Vi,U2,V2,U3,V3]
T (2) 

and 

[c]=[cl,c2, , cn]
T (3) 

in which c , , c2 , . . . are the normal coordinates 
corresponding to the reduced basis composed of n selected 
eigenvectors. 

2. In the present paper, only periodic vibrations of an 
undamped system are considered and therefore the vectors 
(p(0)) and (c(0)) and their increments [Ap] and (Ac) can be 
expanded into Fourier series of the form 

H 

tP(0)) = E l P S , - 2 ) « » ( 2 / - 2 ) T , 

lc<™] = £ { < $ > _ , } C O S ( 2 / - 1 ) T 

i = l 

H 

(Ap) = £ [ A p 2 ; _ 2 ) c o s ( 2 z - 2 ) r , 
i = i 

H 

(Ac)= S{Ac2 ,-_,J COS(2/ '-1)T 

(4) 

The solution process usually starts from a corresponding 
known linear solution with sufficiently small amplitude. For 
the fundamental frequency response, the initial solution can 
be taken as 

«„ = « , , (c<°») =[5,0,0 ]r, (p(0)) = (0) (9) 

where co, = the fundamental linear frequency, (c<0)) = 
initial bending amplitude vector with the first normal 
coordinate equal to an arbitrary small value 5 while all the 
others are set at zero, and (p<0)) = initial stretching am
plitude vector. 

4. The frequency response of nonlinear periodic vibration 
of a multiple degree-of-freedom system with existence of 
internal resonance is represented by complicated curves in the 
frequency-amplitude hyperspace, For tracing the curves of a 
nonlinear frequency response with a given forcing term in
crementally, one increment, called active increment, has to be 
prescribed a priori in each step. To ensure that the numerical 
problem is well conditioned, the current active increment is 
selected among the increments Ac,-,-, and Aw as the fastest 
varying one. When an increment other than Aco is selected, an 
algorithm similar to the one given in [5] for static problem 
will be used. The algorithm is summarized in the following. 

First, equation (6) is written in the form 

(5) 

where H = number of harmonic terms and [/?$'_ 2 ) , (cf?_ j ), 
IAP2/-2), a n d [Ac2,_!) are the corresponding Fourier 
coefficients. 

3. When the element contributions are assembled, the 
linearized incremental matrix equation is written in the form 

An [Al2] 

[A2l] [A22]J 

A«! 

[Aa2) 

+ Aa> 

R, 

IR, 

[F2] 
(10) 

(JK\-<41M\) 

where 

[Ap) 

(Ac) 
= ( R) + Aw{ F] + 

(0) 

[A.?) 
(6) 

where the first matrix [A] denotes ([K\ - oil \M\) °f equation 
(6), Aa, denotes the active increment that is prescribed a value 
of Ao,, while {Aa2} is the remaining increments of the vector 

/ /Fourier terms 

(Ap) = [ . . . . [AUJO, Avi0][Aui2, Avi2] . . . [Auh2H_2,AvL2H_2] . . . ] r (7 ) 

/ /Fourier terms 
, ^ 

[Ac) = [ . . Ac,,, Ac/3 Ac,-2W_, ]T (8) 
F , ( i V r , r 

in which 

[AUijMij] 

Ac.j 

m 
m 
[R] 

the y'th harmonic stretching amplitude in
crements of the z'th node of the plate; 
the y'th harmonic bending amplitude in
crement of the z'th normal coordinate; 
the corresponding tangent stiffness matrix; 
the corresponding mass matrix; 
the correction vector assembled from element 
contributions [Rp] and {Rb} (see equations 
(44) and (45) of Par t i ) ; 

[F] = the unbalanced inertia force vector due to 
unit frequency increment that is assembled 
from element contributions [Fp] and {Fb} 
(see equations (47) and (48) of Part 1); and 

(Aq) = the corresponding transverse load increment 
vector. 

[{Ap}T{Ac}TV,&nA{Rx[R2)
T]T=[R), , , , 

= [F}, while (A<?) is dropped for simplicity. Equation (10) 
can be expanded as 

/ l „ A a 1 + [ ^ 1 2 ] [ A a 2 ) = / ? 1 + A w F 1 (10a) 

[A22]{Aa2 } = [R2}- {A2i }Ad, +Aw{F2} (10b) 

Let (Aa2) be divided into two parts 

{Aa2) = (Aa2) (» + Au(a2)<2) (11) 

By inserting equation (11) into equation (106), one obtains the 
equations for (Aa2)(1> and {Aa2)(2) which can be written in a 
form without relocating the storages for the coefficient 
matrix, 

1 [0] -

(0) [A22] _ 
r A«,<»> 

l (A«2)( ,) 

r 

-. f*2) 

! Aa,<2> ^ 

! (A«2)<
2) _ 

Afl, ! 0 

- [ / l 2 1 ) A a 1 | 1^2) 
(12) 

All matrices and vectors are formed automatically by com
puter. 

Substituting equation (1) into equation (10a) and solving for 
Aw, we obtain 
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Aco = 
AnAdl+[Al2]{Aa2}^-Rl 

^'i - [ ^ i 2 ] { A a 2 
1(2) (13) 

If | Aa2 )
(1) and (Aa2 ]<2) are solved from equation (12), then 

Aco can be calculated from equation (13) and consequently 
(Aa2 J is obtained from equation (11). 

5. The preceding algorithm is in fact equivalent to the 
incremental method with one-step Newton-Raphson 
correction. However, to achieve a satisfactory accuracy, a 
(modified) Newton-Raphson iteration can be applied with an 
updated correction vector (R) each time. 

Let 

I * J =[(*i)„ , l~RiVnV 
denote the «th updated correction vector then the nth 
correction for the vector (Aa], i.e., 

| M j „ = [(Aa,)„, [ Aa2} J,}T (in fact (A«,)„ 

= 0, as Aa, is prescribed) 

will be solved from the following equation (refer to equation 
(12)) 

0 

[A22] 

(Aa,)„ 

( A « 2 ) „ 

0 
(14) 

and the nth frequency correction Aco„ will be calculated from 
(refer to equation (13)) 

[Al2\{Aa2},,-(R{)n 
A0J" Fi-[Al2]{Aa2}V 

Thus, the (n + l)th updated results are 

= \a „ + 
0 

[A«2j„ 
,co„+l =U„+ALO„ 

(15) 

(16) 

The iteration can be repeated until a criterion, similar to that 
given in [6], max l(Aa,)„/a, ref I < permissible error, is 
satisfied. (Aa,)„ is the /'th component of the most recently 
computed corrective increment and a,ref stands for the largest 
total amplitude of the same type. 

6. As the system (equation (6)) is described by N + 1 
generalized coordinates (the total number of components in 
(Ap} and {Ac) plus Aco), it traces a set of hyperspace curves 
in a (N + l)-dimensional Euclidean space. A quadratic ex
trapolation technique is used to predict the next point after 
sufficient previous points have been obtained. Such a scheme 
can usually reduce the number of iterations required for the 
solution to converge. The magnitude of extrapolation is 
restrained in a way such that the measure of the errors in each 
step remains the same, but an upper limit of arc length in
crement can be imposed to ensure sufficient number of 
solution points are obtained to trace the space curve. 

3 Internal Resonance Behavior of Plate 

A simply supported rectangular plate with aspect ratio b/a 
= 1.5 (Fig. 3 of Part 1 [1]) is characterized by the fact that the 
linear frequency co13 (its corresponding mode shape has one 
half wave in the jc-direction and three half waves in the y-
direction) is slightly larger than three times the fundamental 
frequency, con, i.e., 

co13=3.45co1, (18) 

Under this circumstance, internal resonance between the two 
corresponding mode shapes may take place in the range of 
large amplitudes. The following analyses reveal that internal 

Table 1 Linear frequencies for simply supported rectangular 
plate with b/a = 1.5 (co,y = X^D/ph/a1 

*u 
Present FEM 

Analytical 

* l l 

14.22 

14.26 

*13 
49.02 

49.35 

*31 

93.23 

93.21 

hs 
121.59 

119.53 

resonance does occur for the case of plate with immovable 
edges. However, it is interesting to note that in the case of the 
same plate with movable edges, the phenomenon of internal 
resonance fails to appear even though the nonlinear frequency 
has shifted to 2.5 con as the center amplitude increases to a 
rather large value of four times the thickness. It is logical to 
conclude that the inplane restraints have a definite influence 
on the behavior of the nonlinear vibration of plates. 

In the following analysis, a finite element grid of 4 x 4 for 
a quarter of the plate is used (see Fig. 3 of Part 1 [1]) and the 
first four symmetric modes are considered to be satisfactory 
for making up the reduced basis. The corresponding linear 
frequencies computed by the present element are listed in 
Table 1 for reference. For simplicity only two harmonic terms 
will be taken in equations (4) and (5), this being the minimum 
number of harmonic terms that must be retained to reveal the 
phenomenon of internal resonance. 

With these approximations, the nodal deflections of the 
plate are then expressed by the following formula 

w(x„,y„,f) = // ] £ ]2ci%2j„i<t>,(x„,y„)cos(2y-\)wt (19) 
= i y = i 

where x„,y„ = coordinates of node n, 4>i{xn,y„) = the /th 
symmetric mode shape, c/ |2/_, = the (2/ '- l)th harmonic 
amplitudes of the z'th normal coordinate. For convenience in 
presenting the results graphically, the center point deflection 
is selected to represent the response of the plate, i.e., 

where 

wc(t)/h=Aci cosut+Ac3 cos 3oit 

^• = 1CC ' . '*'(T'T) 

A.CT, — £ c , 3 c A , ( | , T ) 

(20) 

(20a) 

(206) 

Free Vibrations. The problem of free vibration will be 
considered first, as the backbone curves will given important 
information about the behavior of nonlinear plate vibrations. 

The following two cases have been computed: 

1. Plate With Movable Edges. The in plane boundary 
conditions are v = 0, Sx = 0 at x = 0, a; u = 0, Sy = 0 at y 
= 0, b. The computed results represented by the center point 
amplitude are plotted in Fig. 1. It shows that the internal 
excitation is very weak, and implies that the fundamental 
frequency cannot catch up with one-third of the second 
frequency with increasing amplitude under such inplane 
boundary conditions. 

2. Plate With Immovable Edges. The inplane boundary 
conditions are u = v = 0 at x = 0, a and y = 0, b. In this case 
the expected internal resonance does occur. The frequency 
responses of the center point amplitude (equation (20)) are 
shown in Fig. 2, and the nonlinear mode shapes at different 
amplitude levels are plotted in Figs. 3(a,b). The response 
curve starting at the linear fundamental frequency cou with 
zero amplitude shows a hardening type at the beginning. 
However when the frequency ratio is increased to the vicinity 
of co/co! = 1.18, the third harmonic amplitude Ac3 begins to 
grow apparently as its co13 -mode component (viz. </>2 in 
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1.5 

1.0 

A d 

1.00 

( Q ) w / u j ) l = 1.219 

1.00 

Fig. 1 Center amplitude versus frequency relation of simply sup 
ported rectangular plate with movable edges -0.5L (bJUJ/u j^ 1.272 

x= Q/2 

Fig. 3 Nonlinear mode shape of simply supported rectangular plate 
corresponding to points a and b on the frequency axis of Fig. 4 

^ _ 2 

Fig. 2 Free internal resonance response of simply supported rec
tangular plate with immovable edges 

equation (20b)) is being excited to a state of internal 
superharmonic resonance as shown in Fig. 2, and at the same 
time, the first harmonic amplitude Aci which is mainly 
composed of the fundamental mode shape, (4>i in equation 
(20a)), begins a U-turn and drops sharply due to the transfer 
of energy to the third harmonic term. Continuing to trace this 
solution, the curve Ac[ eventually crosses the axis and grows 

Fig. 4 Three-dimensional plotting of backbone curves by computer, 
a n -backbone, u-^-backbone 

again in the negative direction (out of phase with the previous 
one) while the curve A c3 forms a loop and decreases again due 
to getting out of the internal resonance as shown in Fig. 2. 

To obtain a complete amplitude-frequency response in the 
neighborhood of w = o)n within the range of the present 
approximation (four eigenvectors and two harmonic terms), 
let us note the following facts: (a) The response curve (Fig. 2) 
would still represent a solution even if the sign of the coor
dinates is reversed, (b) There is another solution starting at 3o> 
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1.0 1.1 1.2 1.3 
u » / u j n 

Fig. 5 Comparison of frequency response of free vibration, 
— • — • — • — one harmonic term solution, two harmonic term 
solution 

Fig. 6 Three-dimensional plotting of forced frequency response ex
cited by uniformly distributed force q = 4.8(D/i/a ) coswf, forced 
vibration response, u ^ -backbone, — . — • — . - — U 1 3 -
backbone 

= «13 with the first harmonic term equal to zero. In fact, this 
solution is nothing but the nonlinear free vibration 
corresponding to the linear frequency col3. With these facts in 
mind, the frequency responses can be drawn in the u-Acl-Aci 
space as shown in Fig. 4. The curves that have positive Ac3 are 
denoted by bold lines, otherwise by thin lines, and the in
tersecting points between the curves and the coordinate planes 
are marked with solid circles. Curve 1 actually represents the 
solution shown in Fig. 2, since the Acl and Ac3 curves are just 
the two projections of curve 1 on the w-Acl and w-Aci planes, 
respectively. Curve 1' is obtained by reversing the signs of Acl 
and A & from curve 1, so they are symmetrical with respect to 
the co-axis. The screwlike character of the response curve can 
be seen clearly from the diagram. The dotted line 2 is the 
solution curve represented by 

wc=Aci cos 3co? 
with 3 co stemming from the linear frequency co13. Points c and 
d denote the two bifurcation points. 

Thus, the curves shown in Fig. 4 are the backbone curves of 
the plate taking into account the effects of internal resonance 
between the first two frequencies of symmetric modes. 

It is obvious that if the third harmonic term was dropped, 

the internal resonance phenomenon would be phased out 
from the solution. For comparison, a solution obtained by 
retaining only one harmonic term, viz COST for w (but still 
having two harmonic terms, viz 1 and COS2T for u and v) is 
plotted with dash-dotted line and the previous two-term 
solution is plotted with a solid line in Fig. 5. From this figure, 
an interesting conclusion can be drawn such that except for 
the internal resonance phenomenon, the single term solution 
still provides a fairly good approximation for the remaining 
part of the projection curve on w-Acl plane. This fact is of 
great significance in practical nonlinear vibration analysis. 

Forced Vibration. With such a complicated backbone 
curve, it would be interesting to trace the forced vibration 
behavior of the plate. In this section, the periodic vibration 
excited by an uniformly distributed load with an intensity of 

q= <x(Dh/a4)coso)t 

will be considered. In the preceding equation, a is a dimen-
sionless force amplitude which is taken to be 4.8, and co is the 
exciting frequency close to con • 

For forced vibration, the computation procedure has to be 
carried out in two steps. Firstly, a certain frequency is fixed, 
and the response is calculated by increasing the exciting force 
incrementally until a prescribed value is reached. After that, 
the amplitude-frequency response is then computed with the 
forcing term remaining constant using the same method 
outlined for the case of free vibration. 

For undamped forced vibration there must be several 
separate branches of solution, i.e., the inphase and the out-of-
phase resonance. 

The computed frequency responses represented by the 
center amplitude (equation (20)) are plotted by computer as a 
space curve in Fig. 6. The backbone curves are also plotted in 
this figure with dotted line and dash-dotted line to facilitate 
the understanding of the relation between them (note that the 
angle of view is different from that of Fig. 4). Again as in Fig. 
4, the bold and thin lines indicate their being in front of and 
behind the co-Acl planes, respectively. 

(/) Inphase Response. The inphase response is shown by 
curve 1 and 1'. It is apparent that two separate branches exist 
due to the occurrence of super harmonic resonance caused by 
internal resonance. 

The first branch (curve 1 in Fig. 6) starts at a frequency of co 
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Fig. 7 The projection of forced frequency response on u-Ac1 plane, 
forced frequency response, W11 -backbone 

Fig. 8 The projection of forced frequency response on a-Ac3 plane, 
forced vibration response, u1 1 -backbone — • — • — wi3-

backbone 

< coj], goes intitally along the backbone curve stemming from 
o>u (dotted line, which will be simply called wu -backbone) 
and subsequently, near the bifurcation point c, turns to be the 
superharmonic resonance of the second symmetric mode-
shape frequency with the amplitude Ac3 growing toward 
infinity along the backbone curve stemming from CJ13 (thin 
dash-dotted line, which will be simply called co13-backbone). 

The second branch of this solution represented by curve 1' 
follows another branch of the co,3-backbone (bold dash-
dotted line), and after passing the neighborhood of point d 
returns to the inphase fundamental resonance along side the 
co,i-backbone (bold dotted line). It is interesting to note that 
the third harmonic term of this branch has a phase difference 
of ir with that of the first branch just as the case about or
dinary superharmonic resonance. 

For clarity, the two projections of these curves on the w-Ac] 
and <ji-Ac3 planes are plotted in Figs. 7 and 8 curve 1 and 1'). 

(/(') Out-of-Phase-Resonance. This solution (curve 2 in 
Figs. 6-8), which starts at a frequency w > <au, follows the 
W!!-backbone (bold dotted line) at first and then turns to go 
along side the co13-backbone (dash-dotted line) and then 
penetrates the oi-Ac[ plane as shown in Fig. 8. Finally, this 
curve also returns to the out-of-phase resonance of the 
fundamental frequency along another branch of the con-
backbone (thin dotted line). The two projections of this 
solution on the u-Aci and oi-Ac3 planes are also plotted in 
Figs. 7 and 8 (curve 2). The out-of-phase resonance behaves 
differently in comparison with inphase resonance, as the 
former does not have any infinite branch. 

It is worth pointing out that if the portions of the curve 
affected by internal resonance is ignored, the forced vibration 
response co-,4d shown in Fig. 7 will exhibit the same 
characater as that of the usual forced vibration without in
ternal resonance. 

4 Conclusions 

1. The proposed computer method is an effective tool 

capable of tracing the complicated response of nonlinear 
structural vibrations 

2. The frequency response obtained by retaining only one 
harmonic term for deflection still gives a good approximation 
except for the phenomenon of internal resonance. This fact is 
of practical significance and implies that an increase in the 
number of normal coordinates and harmonic terms should 
produce correspondingly a more complicated response. 
However, as shown by the example, the solution obtained by 
neglecting some higher harmonic terms could still be a good 
approximation if the internal resonances associated with these 
neglected terms are outside the interested frequency range or 
are somehow polished off by damping. Just under this un
derstanding, it can be regarded that the approximate solution 
obtained by the present method will approach the actual 
solution of the original problem with increasing number of 
degrees of freedom and harmonic terms. 

3. In connection with Point 2, it is expected that damping 
effects may play an important role in nonlinear vibration of 
real structures. Especially, since the damping factor usually 
has greater effects on higher harmonics, and it follows that 
those harmonics whose frequencies are far away from the 
frequency range under consideration may be neglected in 
practical analysis. Modal viscous damping can be introduced 
into the formulation without difficulty; however, the resulting 
coefficient matrix for the amplitude increments will no longer 
be symmetrical. 

4. In this paper, only periodic response have been con
sidered. In fact a wide variety of aperiodic responses also 
exist. Reference [6] represents an effort made toward this 
more complicated problem. 

5. Stability analysis of periodic response has not been 
included here, in fact some parts of solutions presented are 
well known to be unstable. A parameter incremental method 
for computing the instability boundaries of nonlinear 
vibrations has been presented recently [7], however further 
general studies in instability including the parametrical 
combination resonance is required. 
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6. The super/subharmonic resonance may well appear in 
conjunction with internal resonances just as pointed out in 
paragraph (/), but they are not explored in full at present, 
because only those cases where the exciting frequency range is 
near o> = con have been treated. 
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Dynamic Stability of a Nonlinear 
Cylindrical Shell 
The stability of the undeflected middle surface of a uniform elastic cylindrical shell 
governed by Karman's equations is studied. The shell is being subjected to a time-
varying axial compression as well as a uniformly distributed time-varying radial 
loading. Using the direct Liapunov method sufficient conditions for deterministic 
asymptotic as well as stochastic stability are obtained. A relation between stability 
conditions of a linearized problem and that of Karman's equations is found. 
Contrary to the stability theory of nonlinear plates it is established that the 
linearized problem should be modified to ensure the stability of the nonlinear shell. 
The case when the shell is governed by the ltd stochastic nonlinear equations is also 
discussed. 

Introduction 
The static stability (buckling) of elastic plates and shells 

under a deterministic constant loading acting on the middle 
surfaces has been considered in literature during the past 40 
years. The reformulation of buckling problems as a single 
nonlinear operator equation in some appropriate Hilbert 
space due to Berger and Fife [1] and Berger [2] has proved to 
be especially useful and was adopted for branching and 
stability problems of plates and shells, e.g., [3-5]. Such an 
approach was used to study the applicability of the 
linearization of the nonlinear equations for plates and shells 
in the buckling analysis. For example, Vorovitch [6] proved 
that, in contradistinction to the buckling of nonlinear plates, 
the stability of cylindrical shells cannot be analyzed by means 
of the linearized equations. 

The investigation of the dynamic stability of cylindrical 
shells under time-varying axial loading and external pressure 
has been initiated by Bolotin [7] and numerous papers have 
been written on the problem during the past 20 years. Most 
papers were concerned with deterministic loadings while a few 
dealt with simultaneous stochastically interdependent axial 
and radial excitations, e.g., Lepore and Stoltz [8]. All these 
papers have applied finite dimensional or modal ap
proximations in the stability analysis. Using the direct 
Liapunov method the present author established [9] that 
stability conditions for the linearized plates imply the stability 
of nonlinear plates described by symmetric Karman 
equations. 

The intent of the present paper is the investigation of the 
similar linearization of the problem for cylindrical shells 
obeying nonsymmetric Karman equations. Using the 
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Fig. 1 Shell geometry 

Liapunov method, sufficient stability conditions for asymp
totic stability, almost sure asymptotic stability as well as 
uniform stochastic stability are derived. The stability domains 
obtained by applying the linearized equations of motion are 
compared with those employing the dynamic Karman shell 
theory. 

Problem Formulation 

Let us consider a thin elastic cylindrical shell of constant 
thickness h and radius R, Fig. 1. If the material of the shell is 
of uniform density p and transverse displacement w of the 
shell is of an order comparable with thickness but relatively 
small as compared with other dimensions a, b of the shell, the 
differential equations that describe the transverse vibrations 
can be written in the form 
„ , , , d2w dw 
DA2w + ph^+28h---

:Nxw,xx+NYw:YY + h[w,$] 

h * •, E E 
+ ^ *,xx,& * = - - [w,w]- - wiXX, 

(X,Y)e(0,a)x(0,b) (1) 
where 

$ = the stress function 
E= Young modulus 
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p = Poisson ratio 

D=Ehi/\2{l - v2) = flexural rigidity 

5 = damping coefficient 

T= real time 

(-Xx=dX 

lf>g] =f,Xx8, YY +f, YY§,XX - V.XYg.XY 

with boundary conditions (simply supported shell) 

w = 0 and wXx = Q a t X=0,a 

w = 0 and vv r y = 0 at Y=Q,b 

$yy = 0 and $ ^ y = 0 at X=0,a 

$,xx = 0 and $.XY = 0 a t Y-0,b. 

For the shell subjected to a concentrated axial load P(T) 
and a uniformly distributed radial loading q (T), the initial 
membrane loads can be determined by assuming the shell 
remains circular and undergoes a uniform compression 
circumferentially. Consequently 

NX=P(T)/2TTR, 

NY=Rq(T). 

Introducing dimensionless time t=T(D/phR'i)U2 and 
coordinates x=X/R, y=Y/R, velocity v = dw/dt, reduced 
damping coefficient as well as reduced membrane loads 

(3 = 8R2(h/pD)U2, $X=NX(T)R2/D, 

£y=NY(T)R2/D 

equations (1) become 

A2w + 
d2w 

+ 2(3 
. dw 

~dt ••ZxW,XX + tyW.yy+ p[W,$\ + 
Rh 

15 ' * , 

A 2 $ = - -[W,W]-RE W:XX, 

(x,y)eQ = (0,a/R)x(0,b/R). (3) 

Applying the operator A - 2 (Green's operator of the bihar-
monic equation) to equation (32) and substituting the stress 
function $ into equation ( 3 ^ we obtain a nonlinear equation 

d2 w dw 

-72[w )A-2w,„]-^(A-2 [w,w]),x 

- K ( A 2WiXX)tXX, (x,y)eti (4) 
where 

yi=Eh/2D, y2=ERh/D, n=R2Eh/D, 

for functions we W2iziS^)-
W2ii{Q) denotes a Hilbert space with respect to the inner 
product 

(«.f>2,2 = ] Q (U,XXV,XX + 2u,xyV,Xy + U^V^dQ. 

W2J(Q) is the closure of C™ (Q) in WX2 (fi) and thus can be 
itself regarded as a Hilbert space with the norm 

llwll2,2=(w,w)2,2
1/2. 

The conditions imposed on the stress function and the 
displacement (the boundary conditions (2)) can be written 
down as [10] 

w=Q and 

w = 0 and 

w:XX=0 at x=0,a/R 

w„y = Q at y = 0,b/R 

* = 0 and *,* = () at x=0,a/R 

* = 0 and * , 7 = 0 at y = 0,b/R. (5) 

Let us assume that the solution to the equation (4) exists 
and belongs to the space W2,2(Q). To estimate a deflected shell 
surface we introduce formal stability definitions by using a 
scalar measure II . II (distance) of the solution of equation (4) 
with nontrivial initial conditions from the trivial solution. 
Our study of stability of the undeflected shell middle surface 
w = 0 splits into three branches. 

First, under the assumption that forces l-x, %y acting in the 
shell middle surface are deterministic functions of time, 
conditions of asymptotic stability of the trivial solution, i.e., 
conditions that imply 

Mm llwll = 0 

are derived. 
Our second purpose is to discuss almost sure asympototic 

stability of the trivial solution, i.e., 

PUim II w 11=0 
' ) - • 

if the forces £x, %y are stochastic "nonwhite" processes. 
In the third case, if the forces are broad-band normal 

stochastic processes we investigate the uniform stochastic 
stability of the trivial solution of equation (4), i.e., we for
mulate conditions implying the logic sentence 

A A V l lw( • ,0)11 </'=>/>fsup llw( . ,011 >6J <e. 

We will study the foregoing kinds of stability via Liapunov 
functional approach. 

Asymptotic Stability 

We can give a unified treatment of stability analysis for 
both deterministic forces and stochastic "nonwhite" 
processes. We start from a linearized problem, i.e., omitting 
the nonlinear terms in equation (4) we obtain 

^2w+ — +2Pv=^xwiXX + ^w:yy-K(A'2wiXX)iXX. (6) 

Using the Kozin's method derived for linear problems in [11], 
we construct the functional as follows 

vL = vLp + •KJfi(A"'w,xx)2rffi, (7) 

where the functional VLp is the same as in the stability 
analysis of a linear plate 

VLp=[ [(Aw)2 + v2+2t3vw+2(32w2]dn. (8) 

The functional VL is positive-definite and its time derivative 
along equation (6) is equal to 

- ^ = 2 J f i {(v + (3w)(-2pv-A2w+ZxwiXX + !;yw,yy 

- K (A -2 wxx) iXX + /3t>2 + 2/32 v w + AwAv 

+ KA-lviXXA-lWiXX}dQ. (9) 

Because of the smoothness of functions belonging to the space 
^2,2 it is permissible to integrate by parts the expressions in 
equation (9). Doing the foregoing operations and using the 
boundary conditions (5) we obtain 

dVL 

dt 
= -2/3VL+2UL, (10) 

where 
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UL = \alV + 0W)(£xWlXX + t),W,y},) 

+ 2P2vw + 2(3iw2}dQ. (11) 

Thus, the stability analysis is reduced to construction of a 
bound 

UL£\(t)VL, (12) 

where the positive function X will be determined using the 
variational calculus [11]. The basic inequality (12) can be 
rewritten explicitly as 

XI ( (Aw)2 + u2+2/3uw + 2l8
2w2 + K(A-1H>,.ct)

2)tfQ 

> ( {{v + M(txw,Xx + £yW>yy)+2P2vw + 2(3iw2}dQ. (13) 

The associated Euler's equations of the variational problem 
8(UL—WL) = 0 are given by 

ix W ,xx + ty W.yy + W2 W - X ( V + /3w) = 0, 

tixw,xx + tyw,yy + (3(l3-\)](v + 2(3w) 

-\[A2W + K(A~2W,XX),XX}=0. (14) 

Solving equations (14) with respect to the function w and 
using the boundary conditions (5) we find the appropriate 
function X as follows 

X= max (a2
n+a2„)\2P2-a2

m^x-aUy\ 
m,n = [,2, . . . 

/{(«£+ <*2
n)

2W2 + (a2
m+ a2)2] + Kat,} U2, (15) 

where am=m-wRla, a„=n-wR/b. 

From equation (10) and inequality (12) we have 

K L ( 0 * K L ( 0 ) e x p [ - 2 ( / » - J \ ( j ) d y ) ] . (16) 

Thus, it immediately follows that the sufficient condition for 
asymptotic stability with respect to measure II wll = VY2 is 

+ 2f$2vw + AwAy + 271 A '[w,)v]A '[w,v] 

+ 72 A~' [w, w]A " ' v<xx + 2-y2 A~' wiXXA~' [w,v] 
„2 

+ ^ A - ' w x v A - 1 

7i 
v,Xx] dQ. (20) 

We make an effort to transform equation (20) into the form 
(10). For this purpose we apply the symmetry property [2] 

J n [f,g)h dQ=\a [g,h]fdQ= J^ [h, fig dO, (21) 

and prepare the following equalities using the Green's for
mula as well as the boundary conditions (5) 

f v[w,A~2[w,w]]dQ= [ A-l[w,w]&~llw,v]dQ, 

Jfi v[w,A-2w,xx]dQ= j n A - ' ^ A - ' I w . ^ f i , 

| n v(A~2[w,w])iXXdQ=\ A- 'y^A-' tw.wlrffi , 

1 »< ' - J (A 2wiXX)„dQ= \A-1v.xxA-,w„dQ. (22) 

Upon substituting (21) and (22) into (20) we obtain equality 
(10), where 

[ / = f / i _ ^ i j n ( A - i t v V ) V v ] + J L A - I ^ ) 
27i 

dQ 

*\a{A->Wjam. 4y 
(23) 

Therefore, the stability analysis depends on the construction 
of the bound, similar to the inequality (12) in the linearized 
problem 

U<\*V, 

1 f 
lim - 1 \(s 

or 

)dss0, (17) 

or for almost sure asymptotic stability, if the processes £x, !-y 

are ergodic and stationary, is 

EX<)3, (18) 

where E denotes the operator of the mathematical ex
pectation. 

The auxiliary linearized problem being solved we can now 
direct our attention to the nonlinear operator equation (4) 
governing the radial vibrations of the shell. We derive the 
functional adding a positive-definite operator term to the 
functional VLp 

V=[ [v2+2@vw + 2P2w2 + (Aw)2]dQ 
J a 

+ i i ( 1 [ A " 1 [ M + ~A"1^] ! d Q- (19) 

Upon differentiating (19), applying the bilinearity of operator 
[ . , . ] , and evaluating the second derivative of displacements 
from equation (4) we obtain 

dV f 
= 2J ! j ( ( y + (3w)[-2(3y-A2w+^w i X , + ^ w , ^ dt 

[ {2P2vw + 2pw2+(v + Pw)<&xwtXX + £ywiyy)}dtt + 

+ —A-,wxx) dQ+X*[ [v2+2fivw + 2fi2w2 

7! ' / Jo 

+ (Aw)2}dn. (24) 

Taking into account that the second term on the left-hand side 
is nonpositive and the first term on the right-hand side is non-
negative, inequality (24) will hold, if the function X* satisfies 
the modified condition involving the second-order functionals 
only 

J n [2p2vw+2pw2+(v + Pw)tixwtXX + tiywiyy))dQ, 

+ ^T~\ (A-'wxx)2c?Q<X*f (u2+2/3(;w + 2/32w2 

•7i[w,A 2[w,w]]-72[w,A 2wiXX] 

-^ (A- 2 [w ,w] ) , ; „ - /c (A- 2 w, x , ) , ; „ ]+^ 2 

+ (Aw)2)e?Q. (25) 

We mention that inequality (25) differs significantly from 
inequality (13) relating to the linearized case. In con
tradistinction to the stability of a nonlinear plate [9], it is 
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LINEAR 
CASE 

NONLINEAR 
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X = 2,7-10* 
= 5,4-103 

= 1,0'10* 

X =2,0-10* 

X " de=2,7-104 

60 Ji 
Fig. 2 Stability regions under deterministic periodic (sinusoidal) 
processes 

LINEAR 
CASE 

NONLINEAR 
CASE 

0 40 80 120 160 200 240 280 ji 

Fig. 3 Stability regions under uncorrelated Gaussian processes 

found that the sufficient stability conditions (17) or (18) with 
a function X* satisfying inequality (12) can be not sufficient to 
ensure the stability of trivial solutions of Karman's equations. 
The analogous difference relating to a static buckling of 
nonlinear plates and shells was reported by Vorovitch [6]. 

Similarly as in the linearized case we apply the calculus of 
variation to calculate the appropriate function X* 

X* = max (of2,+a2)2(2/32 

m,n = 1,2, . . . 
-«X>2 

[[ (a2 + a2)4(02 + («*,+ a2)2)(2/32 - k«J, 

flV a ] " 2 0K J 

•Wn)1 

(26) 

The asymptotic stability regions as functions of ft a, and K 
evaluated numerically in the case when the loads are deter
ministic periodic (sinusoidal) processes with equal variances 
ax = oy = a and means equal to zero are shown in Fig. 2. As 
the second numerical example we take the shell loaded by 
uncorrelated Gaussian processes with means equal to zero. 
The dependence of stability regions on damping coefficient j3, 
variance a, and parameter K is shown in Fig. 3. From the 
figures it is seen that the stability regions evaluated by means 

of the linearized theory depend slightly on the parameter K = 
12(1 - v2)(R/h)2. On the contrary, when the nonlinear theory 
is assumed, the critical value j3 increases rapidly with in
creasing K. The results confirm that the linearized theory is not 
sufficient to ensure the stability of shells governed by the 
nonlinear equations. 

Uniform Stability of Stochastic Ito Equations 

If the forces acting on the shell middle surface are broad
band normal stochastic processes the dynamic equations (4) 
can be rewritten in Ito differential form due to Kushner [12] 

dw = v dt, 
dv = \-2Bv~A2w-yl[w,A~2[w,w]]-y2[w,A-2WiXX] 

72 

"2 
(A 2[W,W]) I JW-K(A 2wjXX)_xx]dt 

+ <TiW:XxdZdt) + <J2W,yydtt2(t), (27) 

where £i,£2 are the standard uncorrelated Wiener processes. 
Taking the functional in the same form as in (19) we apply Ito 
calculus to obtain its differential dV 

dV=2\ [ AwAdw +(v + Bw)dv + 2B2 wdw + Bvdw} dQ 

+ Yi j n [ A " V , w ] + - A - y J [2A-> [vv.rfw] 

+ ^A~ldw JdQ+\ (a?(w,xx)
2 

7, J J n 

+ a2(w,yy)
2}dQdt. 

Substituting equations (27), using symmetry property (21) and 
equalities (22) the differential ofKbecomes 

dV=2\ \-0v2-l3(Aw)2+ — (A °1 
2 

, ^ x ) 2 + 4(w,„)2 

o\ 
w,yy)

2jdQdt-2Byl \ [A1[W,W] 

+ 2jj A™'w,«] dQdt+2\Q (f+ /3w)(a1w,„^1(0 

+ <j2wtyydZ2(t))dQ. 

On integrating with respect to t from s to Tj(0» where 
T6(t)=min{Tb,t), T6 = mf{t:\\w\l>8>0\, averaging and 
taking into consideration that E£, = 0, / = 1, 2, it follows that 

EV(TS(t))=V(s)+2\T
g
SU) jo[-|8t>2-/3(Aw)2 

+ tL (A- 'w^) 2 + -± (w,„)2 + -± (w,yy)
2 

(371(A-'[w,w] + 
2R 4 dQdt. 

We estimate the average of functional V assuming that 

Q {Bv2 + (Aw)2 - ^ (A-' w,xx)
2 - | (wv)2 

a\ 
(w,^)2jrffi>0. (28) 

Thus, taking into account inequality (28) and neglecting the 
negative term 

- / 3 Y I ( A - > , W ] + A A - ' I V J 2 , 
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we find that the functional V is a supermartingale, i.e., 
EV(TS(t))< V(s). Neglecting the first positive term/3y2 in the 
integrand of (28) and using Chebyshev's inequality it im
mediately follows that the sufficient condition for uniform 
stochastic stability of the trivial solution of equations (27) 
with respect to measure llwll = Vyl takes the form 

(3> - max( cr? ,a\ \ max (a?„ + a J) 
L m,n = \,2, . . 

/ ( ( « £ + a * ) 2 - ^ / ( a ^ a*)2]. (29) 

It should be mentioned that for certain geometrical dimen
sions and mechanical properties of the shell, the ratio in 
equality (29) can be nonpositive, thus in this case condition 
(29) is useless. 

For example, in the case a~b~R, h = 0AR inequality (29) 
becomes 

/3>max[CT?,oi)/2. (30) 

The condition (29) or (30) generates the sufficient stability 
regions as functions K, alt c2, or au a2. The result (30) is the 
same as a condition of uniform stability of nonlinear plates 
[9]. 

Conclusions 

A method has been presented for analyzing the stability of 
nonlinear cylindrical shells subjected to a time-varying axial 
compression as well as a uniformly distributed time-varying 
radial loading. Two different dynamical models have been 
used, the first when the excitations are deterministic periodic 
or stochastic nonwhite processes, the second one is applicable 
to describing broad-band Gaussian excitations. Using the 
appropriate Liapunov functional, sufficient conditions have 
been developed to ensure both the asymptotic or almost sure 
asymptotic stability for the first model and the uniform 
stochastic stability for the second one. The major conclusion 
is that, contrary to the stability theory of nonlinear plates, the 

linearized problem should be modified to ensure the stability 
of nonlinear shells. The criteria developed in the paper define 
stability regions in terms of variances or intensities of the 
excitation processes, and the physical characteristics of the 
shell. A comparison of the results shows that the stability 
regions of nonlinear shells strongly depend on the system 
parameters. The result for the uniform stochastic stability 
indicates however that in some cases the sufficient conditions 
can be quite conservative. 
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Fluid-Structure Coupling Between 
a Finite Cylinder and a Confined 
Fluid 
The dynamic behavior of a finite length cylindrical rod in a fluid filled annulus is 
considered. The fluid and structure equations are solved simultaneously, with fluid-
structure coupling accounted for. Coupled mode shapes and natural frequencies are 
obtained for various cases. It is found that for short lengths and7 or higher modes, 
the effect of the fluid on the cylinder motion diminishes compared to the infinite 
cylinder case. In addition, coupled and in-vacuum mode shapes can differ in certain 
cases. 

Introduction 

When an elastic cylindrical rod vibrates in an external fluid, 
the effect of the fluid inertia may be accounted for by use of 
an effective fluid "added mass" in the equation of motion of 
the rod. The added mass is expressed as an added mass 
coefficient multiplied by the mass of the fluid displaced by the 
rod [1-4]. The added mass has been calculated by solving the 
equations of motion for the fluid using two-dimensional 
theory [5-9], or using three-dimensional theory and assuming 
the cylinder deforms as it would in a vacuum [10]. The various 
references considered a potential fluid [5-7, 10], a viscous 
incompressible fluid [8], and an inviscid compressible fluid 
[2]. 

In all cases the fluid equation was solved independently of 
the actual motion of the structure. When the two-dimensional 
fluid theory was used, the effect of the structure did not enter 
into the fluid equation. When the three-dimensional theory 
was used, the in-vacuum mode shapes were used rather than 
the actual mode shapes. 

The fluid and structure equations for a rod vibrating in an 
annulus were solved simultaneously in [11] using a Fourier 
transform technique. There the fluid was assumed inviscid 
and compressible, and was flowing axially. The cylinder was 
pinned at both ends. The technique required fluid boundary 
conditions at infinity. The annulus was assumed to be infinite 
in length, with each end of the flexible rod attached to a rigid, 
semi-infinite cylinder. 

The fluid and structure equations are solved simultaneously 
here using a different analytical technique from that in [11]. 
The fluid is assumed inviscid and incompressible, and there is 
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no bulk fluid motion. In contrast to [11], the annulus is 
assumed finite in length. Various fluid and structure boun
dary conditions are considered. 

Derivation of the Equations of Motion 

Consider a finite length cylinder submerged in a confined 
potential fluid (Fig. 1). The equation of motion for the fluid 
is: 

r d2 Id Id2 d2 I 
v 2 K 4^ + 7¥V^ + aFJF(^0=0 (1) 

where V{r,4>,x,t) is the velocity potential. The fluid velocity v 
and pressure p are given by v = - V V and p = p(d V/dt), 
respectively, where p is the fluid density. Only small defor
mations of the cylinder are considered, so the pressure is given 
by a linearized Bernoulli equation. 

The equation of motion for the cylinder is 
8*y d2y 

EI~+m-dx4 dt2 -P(x,t) + F(x,t) (2) 

where y = cylinder displacement, EI = cylinder flexural 
rigidity, m = cylinder mass per unit length, P(x,f) = force per 
unit length acting on the cylinder due to fluid pressure, and 
F(x,t) = force per unit length due to effects other than fluid 
pressure. 

The fluid boundary conditions are dV/dr= -y cos <j> at 
r = a (where the dot denotes partial derivative with respect to 
time), 3V/dr = 0 at r = b, and V=0 or dV/dx = 0 atx = 0 and 
x = L. K=0 corresponds to an open end (zero fluctuating 
pressure), and dV/dx = 0 corresponds to a closed end (zero 
fluid velocity). 

Using separation of variables, the solution to (1) may be 
written: 

y= E Rn(r,t)X„(x)cos$ (3) 

where Rn(r,i) and X„(x) are solutions to 
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X = 0 X=L 
Fig. 1 Geometry of a finite length cylinder in a confined potential fluid 

- + A 2 X = 0 

The solution to (5) is 

X„ (x) = C„ sin A„x + Dn cos X„x 

(5) 

(6) 

•L dt2 -Xn(x')dx'+F(x,t) (16) 

Equat ion (16) is solved subject to the classical cylinder 
boundary conditions, with the X„(x) determined by equation 
(6) and fluid boundary conditions, 

where C„, D„, and X„ are determined by the boundary The equation of motion may be put in dimensionless form 
conditions a t x = 0 a n d x = L. by defining i\=y/L, £=x/L, T=(EI/m)Vlt/L2, T= FLl/EI, 

Substituting (3) into the boundary condition at r = a, a n d Q„ = TrpaLH„(a)/m. Then (16) becomes 
multiplying by X„(x), and integrating over x from 0 to L 
produces 

dRn{r,t) 

dr 

\ y(x,QX„(x)dx 

\oXl(x)dx 

*" +
 d " TV x m 

(7) s: 
» = i 

1 a2^',r) 
dT2 •XAS'W+m,r) (17) 

Substituting equation (3) into the boundary condition at r = & 
produces 

dR„(r,t) 

Free Vibration 

dr 
= 0 (8) 

The solution to (4) with boundary conditions (7) and (8) is 

where 

H„(r) = 

R„(r,f) = Hn(r)Y„(t) 

[/,' (X„ b)Kl (X„ r)-Ki(\„ b)h (X„ /•)] 

(9) 

(«) Eigenvalue Problem Assume a solution for the /th 
normal mode of the form 

i,tt,T) = tf,tt)e'D'T (18) 

where Q, is the dimensionless frequency and !/•,(£) is the mode 
shape. Substituting into (17) produces 

o?£4 

A„ =/1 '(X„a)^,'(X^) - / . ' ( X ^ ^ a ) 

F„(0=joJ'(x,0^„M^ 

Ho^ ^?f i fcc 

-/34 ,̂=/34 £ 0 ^ ( 0 ( ^ ( n * „ ( s w (i9) 
« = i j o 

(1°) where ft = Q'f', and 0,- is related to the circular frequency o>,- by 

(11) Q,=L2(m/EI)'AUi (20) 

Equat ion (19) is a Fredholm integro-differential equation for 
(12) the mode shapes i/<,(£) and natural frequencies Q,-, and is 

subject to cylinder boundary conditions on i/-,(£)-
Define the operator P by 

(13) 

and prime denotes differentiation with respect to x. 
Substituting (9) into (3) gives for the pressure distribution 

PMf)]= EG»*»«)J0*„«'Wtt')rf*' (21) 

p{r,<j>,x,t) = £ PHn(r)Y„(t)X„(x) cos <$> 

Then P has eigenvalues G„f„/L and corresponding eigen-
Ci4) vectors X„(£). Equat ion (19) may be written 

The force per unit length acting on the cylinder due to fluid 
pressure is 

d£* 
= /34[I + PW/ (22) 

i 2ir 

pia^x.Oa cos (j> d<i> 

oo 

= -pm^Hn(fl)XnWYn(f) 

(15) 

where I is the identity operator . The operator I + P has 
eigenvalues 1 + G„f„ /L and corresponding eigenvectors 
X„(£). The inverse Q = (I + P ) - ' exists if l + G „ / „ / L * 0 for 
all n. This inequality holds because the quantity G„f„/L>0 
for all n. Then Q is given by 

Substituting (15) into (2) produces the following Fredholm 
integro-differential equation for the cylinder motion 

^ L/fn f ' 

" = 1 i +
 G"f" 

Mi'W (23) 

858 / Vol. 51, DECEMBER 1984 Transactions of the ASME 

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 1 Summary of cases considered 

Case 1 Case 2 Case 3 

Boundary conditions 

Cylinder length L 

Cylinder density pc 

Cylinder outer radius a 
Cylinder inner radius ay 
Elastic modulus E 

Fluid density p 

Annulus radius b 

Density of material 
inside cylinder p! 

(m) 
(kg/m3) 

(m) 
(m) 
(Pa) 
(kg/m3) 
(m) 

(kg/m3) 

Pinned-pinned 
Closed-closed 

1.0 
7.83X103 

l .OxlO" 2 

0.0 
2.069x10" 

1.Ox 103 

l . l x l O " 2 

0.0 

Cantilevered 
Open-open 

3.854 
7.83X103 

4.801x10-3 
4.331x10-3 
2.069x10" 

1.0X103 

5.042x10-3 

1.016X104 

Cantilevered 
Open-open 

8.268 
7.83x103 

1.935 
1.88 

2.069x10" 
l.OxlO3 

2.198 

l.OxlO3 

• e = 1.1 
*e = i.5 
oe =2.0 
x e =io.o 

Fig. 2 Added mass coefficient for PP, open-open boundary conditions 

Multiplying (22) by Q produces 

(O iM0 = #M© (24) 

Determining the mode shapes and natural frequencies is 
reduced to determining the eigenvalues and eigenvectors of 
the operator Qrf4/rf£4. 

(b) Solution of Eigenvalue Problem. To solve (24), let the 
i/<;(£) be expressed as linear combinations of the in-vacuum 
mode shapes </>,„(£) of a cylinder with the same boundary 
conditions. The $,„(£) satisfy 

d^ • = # * 

4>m<l>nd£=Fmb„ 

(25a) 

(256) 

where fim0 = /3,„0 is the dimensionless frequency for the 
cylinder in vacuum, and Fm is a normalization constant. 
Henceforth, equation (25) will be referred to as the uncoupled 
problem (i.e., no fluid-structure coupling), and (24) will be 
referred to as the coupled problem. 

i/<,(£) may be written 

**«) = .U^»/*»«) (26) 

Substituting (23), (25), and (26) into (24), multiplying both 
sides by <j>P(k), and integrating over £ produces 

L/fn 

m = \ n=\ <-r„Jn 
({>.M«) 

(jl
oXn<pmdi)Aml = PtFpAp (27) 

L and Fp = 1 Let the X„ and 4>P be normalized such that /„ 
respectively. Define the infinite column vector 
Aj = [AuA2i . . . V, and the infinite matrices B= [/„,„], 
R = [<WO+G„)], S = [#„05m„], and T = BrR B S, where 
J,m = \oXn<t>md£. Then (27) becomes 

TA, = #A, (28) 
The infinite system (28) is truncated and solved as a standard 
eigenvalue problem. The sums over m and n in (27) are 
truncated to M and ./V terms, respectively. Physically, this 
truncation involves deciding how many uncoupled cylinder 
modes M and fluid modes N contribute to the coupled mode 
in question. Note that the truncated matrices B, R, and S are 
N x M, N x N, and M x M, respectively, and that R and S 
are diagonal. 

The primary difference between the treatment here and in 
[11 Section V] is in the type of superposition used and the 
corresponding boundary conditions. Here the fluid force is 
expressed as a linear combination over a discrete basis X„(£), 
where the Xn{£) satisfy fluid boundary conditions at £ = 0 and 
£ = 1. In [11], the fluid force is expressed as a linear com
bination over a continuous basis e"'a?, where a is a Fourier 
transform variable. In expressing this superposition as a 
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Table 2 Natural frequencies for Cases 1-3 

Case 

1 

2 

3 

L/a 

100 

803 

4.27 

Mode 
number 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 

In-vacuum 
natural 

frequency 
(Hz) 
40.37 

161.5 
363.4 
646.0 

1009.0 

0.2424 
1.519 
4.254 
8.336 

13.78 

32.16 
201.6 
564.4 

1106.0 
1828.0 

Coupled natural 
frequency 

(fluid-structure 
coupling) 

(Hz) 
36.04 

105.6 
250.5 
423.9 
677.5 

0.1380 
0.8646 
2.421 
4.744 
7.842 

18.22 
123.2 
393.4 
856.6 

1518.0 

Natural frequency 
using 

two-dimensional 
fluid theory 

(Hz) 

26.37 
105.5 
237.3 
421.9 
659.3 

0.1377 
0.8630 
2.417 
4.735 
7.828 

12.43 
77.87 

218.0 
427.2 
706.3 

Fourier integral, it is necessary to assume boundary con
ditions on the fluid at £= ±oo (see [11], just under equation 
(35)). Equation (3) here corresponds to (33) in [11]. 

(c) Solutions for Various Boundary Conditions. The 
simplest case is where the cylinder is pinned at both ends, and 
the annulus is open at both ends. In this case .A"„ (£) = </>„(£) = 
V2sinK7r£, (3nQ = nir,f„=L, andF„ = l. Then J„m=bnm, B is 
the identity matrix, and T=[/3j,05mB/(l+G„)]. The solution 
to (28) is 

Pf=i4TT'i/(l+Gi) 

[0,0 0,1,0, . MT 
(29a) 
(29b) 

(i.e., the rth entry is 1). 
The natural frequencies are 

co,- = (i2ir2/L2)[EI/m(l + G,)]Vl 

From (30), the fluid added mass (per unit cylinder length) is 
mGj. The added mass coefficient C„M- is the ratio of the added 
mass to the fluid mass displaced by the cylinder. Then 

(30) 

pilI{(PiWl(.epi)-i;(.epi)K;(pi)] 
(31) 

where pt• = i-wa/L and e=b/a. CmJ is plotted in Fig. 2 as a 
function of p, for various e. Note that as L —oo and p/—0, 
Cfflil— (e2 + \)/(e2 - 1), which is the result obtained for a two-
dimensional potential fluid [9]. In addition, the fluid has less 
of an effect on short length cylinders. 

Additional cases with boundary conditions other than 
pinned-pinned, open-open are summarized in Table 1. Results 
for these cases were obtained by truncating the system (28). 
Adequate convergence for the lowest coupled modes was 
obtained using 30 uncoupled cylinder modes (M= 30) and 600 
uncoupled fluid modes (N= 600). 

Cases 2 and 3 are applicable to nuclear technology, i.e., a 
control rod inserted in a guide tube and a core support barrel 
in a reactor vessel, respectively. Data for these cases is ob
tained from [12]. For Case 3, L/a is sufficiently small that 
rotary inertia and shear deformation cannot be ignored. This 
case is included here to illustrate the relative importance of 
fluid-structure coupling for small L/a. For Cases 2 and 3, the 
cylinder is allowed to be hollow with inner radius ai and filled 
with material of density px. 

Natural frequencies for Cases 1-3 are shown in Table 2. For 
modes 1-5, the uncoupled (i.e., no fluid present) natural 
frequency, coupled natural frequency accounting for fluid-
structure coupling (i.e., solving the fluid and structure 
equations simultaneously), and natural frequency using two-
dimensional fluid theory are given. The latter is based on an 

added mass coefficient Cm = (e2 4- l)/(e2 - 1). In all cases, the 
frequency reduction due to the fluid is less when fluid-
structure coupling is accounted for than when the two-
dimensional fluid theory is used. 

The effect of the fluid-structure coupling is largest when the 
parameter L/a is small. For Case 2, with L/a = 803, the 
coupled natural frequencies for the fluid-structure coupling 
and two-dimensional fluid theory cases are almost the same. 
For Case 1 (L/a = 100), the difference between the two cases is 
larger, while for Case 3 (L/a = 4.27), it is still larger. For 
higher modes, the effect of the fluid becomes less 
pronounced, and the coupled natural frequencies for the 
fluid-structure coupling case approach the uncoupled natural 
frequencies. This effect may be seen in the Case 3 results. This 
effect is not seen in Case 1 and 2 results because of the larger 
L/a; there the effect becomes significant in higher modes. 
These results are consistent with the results for the pinned-
pinned, open-open case (Fig. 2). The effect of the fluid is 
largest when the parameter i-wa/L is small. The two-
dimensional fluid theory case is approached as i-wa/L —0. As 
/ira/L —°° (either /—•oo or L/a—0), the effect of the fluid 
becomes negligible. The Case 3 results are quantitatively in 
error because rotary inertia and shear deformation have been 
neglected. However, the Case 3 results do indicate that fluid-
structure coupling is important when L/a is small. 

Coupled and uncoupled mode shapes are shown for Case 1, 
modes 3 and 5 (Fig. 3), and Case 3, modes 2 and 3 (Fig. 4). 
Mode shapes are not shown for Case 1, modes 1, 2, and 4; 
Case 3, mode 1; Case 2, modes 1-5 because there the dif
ference between coupled and uncoupled mode shapes is 
negligible. Coupled and uncoupled mode shapes for Case 3, 
modes 4 and 5 exhibit similar but smaller differences than 
Case 3, modes 2 and 3. These results show that the coupled 
and uncoupled mode shapes can differ in certain cases. The 
use of uncoupled mode shapes for cylinder deformation [10] 
is not always justified. 

In particular, Case 1, modes 3 and 5 exhibit substantial 
fluid coupling between in-vacuum modes 1 and 3, and 3 and 
5, respectively. This occurs because the uncoupled fluid mode 
axial dependencies X„(£) differ from the in-vacuum structure 
modes 4>n(%) due to the pinned-pinned, closed-closed 
boundary conditions. The even cosine fluid modes have 
pressure maxima at the center of the cylinder and tend to 
excite corresponding next higher plus next lower odd in-
vacuum structure modes. The odd cosine fluid modes have 
pressure nodes at the center and tend to excite only 
corresponding next higher even in-vacuum structure modes. 

For Cases 2 and 3, the sine fluid modes are able to excite 
various centilevered, in-vacuum structure modes. However, 
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Q 

UJ 2.0-

1.0-

o.o-

-1.0-

-2.0 

*=C0UPLED 
° UNCOUPLED 

MODE 5 
P.P.,CLOSED-CLOSED 

i 1 1 1 1 1 1 r 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

DIMENSIONLESS COORDINATE 
Fig. 3 Coupled and uncoupled mode shapes - Case 1, modes 3 and 5 

2 0 4 I I I I I I I L 

l . o -

o.o-

Q--I.O-< 

- 2 0 -

3.0-

2.0-

MODE 2 

CANTILEVERED, OPEN-OPEN 

A =COUPLED 
D = UNCOUPLED 

cr 
o I.0-

0.0-

- I .0 -

-2.0-

MODE 3 
CANTILEVERED, OPEN-OPEN 

—1 1 1 1 1 1 1 1 1 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

DIMENSIONLESS COORDINATE 
Fig. 4 Coupled and uncoupled mode shapes - Case 3, modes 2 and 3 

for Case 2, a/L is small enough that, for the lower modes, the 
coefficients G„ are the same (see Fig. 2, equation (31), and 
note that G„ = {-Kpa2/m)C„hn). In equation (27), G„ is seen to 
affect the weighting of each fluid mode. This is to be ex
pected, as G„ influences the added mass coefficient and 
therefore affects the amplitude of the pressure due to each 
fluid mode. When the G„ for a number of adjacent modes are 

the same, the R and T matrices become multiples of the 
identity matrix, and the different in-vacuum structure modes 
are uncoupled. For Case 3, a/L is large enough that the G„ 
for the lowest modes differ substantially. The in-vacuum 
structure modes 2-5 are coupled (see Fig. 4). Mode 1 is 
practically the same in-vacuum and with fluid present. Mode 
1 is excited by the lowest sine fluid mode, and this fluid mode 
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does not substantially excite higher in-vacuum structure 
modes. Note that for Case 3, as higher structure modes are 
considered, the G„ of adjacent modes are more nearly equal 
and the mode coupling becomes weaker. The results show that 
the in-vacuum and coupled modes are more nearly the same 
for Case 3, mode 5, than for Case 3, mode 2. 

In general, two in-vacuum structure mode shapes will 
couple when fluid is present, and produce different in-fluid 
coupled mode shapes, if the following two conditions hold: 

(/) The two in-vacuum structure mode shapes must be 
excitable by a common set of fluid mode shapes. 

(/;') The weights of the fluid mode shapes, G„, must differ. 
These requirements guarantee that the off-diagonal terms in 
the T matrix will differ from zero sufficiently. 

Conclusion 

The dynamic coupling between a rod and fluid in an an-
nulus has been considered. The fluid and structure equations, 
together with appropriate interface and boundary conditions, 
were solved simultaneously. It was found that the infinite 
cylinder added mass coefficient is valid for long cylinders 
and/or lower modes. For short cylinders and/or higher 
modes, the infinite cylinder solution will overpredict the 
added mass. As the parameter iva/L-~co, the effect of the 
fluid becomes negligible, while as iira/L~0, the infinite 
cylinder results are approached. The coupled and uncoupled 
mode shapes may differ in certain cases. 
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Optimal Control of a Rotor Partially 
Filled With an Inviscid 
Incompressible Fluid 
Optimal control theory is used to stabilize a rotating cylinder partially filled with an 
in viscid, incompressible fluid. As an example, the theory is used to control a rotor 
consisting of two discrete masses connected by a flexible shaft. The fluid is inside 
one of the masses and the control force is applied to the other. The rotor-fluid 
system which is unstable without controls is shown to be stable when acted upon by 
a feedback force designed to minimize a suitable performance index. 

Introduction 

A hollow circular cylinder mounted on a flexible shaft and 
partially filled with liquid exhibits unstable behavior under 
certain operating conditions. This instability, first noticed by 
Kollmann [1], was explained analytically by Kuipers [2], 
Wolfe [3], and Hendricks and Morton [4-6]. The system is 
shown to be unstable when the rotor spin speed is such that 
the frequency of a surface wave in the liquid occurs near the 
vibrational frequency of the rotor. The resulting resonance 
causes exponential growth in the runout of the rotor and 
introduces a dangerous asynchronous whirling condition. The 
bounds of this unstable operating region depend on various 
system parameters such as mass ratio, damping coefficients, 
fluid viscosity, fill ratio, etc. [see 5,6]. 

Recognizing the potential for destructive asynchronous 
whirl, the designer of rotating machinery (which handles 
fluid) is left with two options: to attempt to avoid the in
stability or to try to control it. This paper demonstrates that, 
if necessary, the instability can be controlled using a feedback 
control force which is the solution to an optimal control 
problem. 

Previous efforts to use active control on an unstable rotor 
have been reported by Schweitzer [7] and Taylor [8], Sch
weitzer [7] developed an active control scheme used to suc
cessfully control an empty viscoelastic rotor. The un
controlled rotor is inherently unstable above a critical spin 
speed due to the internal damping of the viscoelastic material. 
Schweitzer used pole placement to determine gains in a linear 
feedback control scheme. He also reports some experimental 
results. Taylor [8] analyzed the motion of a cup on a flexible 
shaft containing a small loose ball. He found that the small 
ball produced an instability somewhat similar to that 
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produced by an entrapped fluid. Taylor used linear regulator 
theory to control this unstable system. He demonstrated that 
a real-time active control was able to suppress whirl in his 
system by applying stabilizing forces to the cup. 

This paper uses linear regulator theory to control a rotor-
liquid system. The treatment is novel since the source of the 
instability is the entrapped fluid rather than a loose ball or a 
viscoelastic rotor material. Since many rotors now in use are 
flexible (and therefore multicritical) the theory is applied to a 
general two-critical rotor (the simplest multicritical rotor). 
The intent is to demonstrate the ability to control the entire 
system through the use of a single feedback force. The 
example rotor consists of two discrete masses connected by a 
flexible shaft. The first mass is a hollow cup that is partially 
filled with liquid. The control force will be applied to a second 
mass located at a different spot on the shaft. This system is 
designed to provide the control theory with a rigorous test 
since the source of the instability (first mass) is related to the 
control force (applied to the second mass) only by the 
dynamic coupling. A single critical rotor is not used because it 
would be an unrealistically easy task for the controller (since 
the control force would be applied directly at the source of the 
instability). Liquid-filled centrifuges, liquid-cooled gas 
turbines, and spinning rockets containing liquid fuel are 
examples for which this analysis may be applicable. 

Problem Definition 

The motion of the rotor-liquid system is governed by a set 
of ordinary differential equations for the rotor and a set of 
partial differential equations for the liquid. These equations 
are coupled: the liquid pressure on the cylinder wall is a 
distributed force that affects the motion of the rotor; the rotor 
is a noninertial reference frame that adds acceleration terms 
to the fluid equations. The system equations were developed 
in reference [5] for a single critical rotor. They are repeated 
here since a different rotor model (multicritical) is being used 
and the equations must be arranged in state space form to be 
used in the optimal control problem of this paper. Arranging 
the equations in state space form is a significant step in the 
solution process and has not been reported before. 
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Fluid Force Control Force 

Control Force, f 

Shaft 

/ / / / / / / / / / / / 
Fig. 1 Rotor system 

The entire treatment is linear, the fluid is assumed to be 
inviscid and incompressible, and the rotor masses are not 
allowed to tilt. The rotor shown in Fig. 1 is meant to stand for 
any general two-mass rotor model. To keep the system 
general, the effect of the shaft is modeled as a series of springs 
and dashpots placed between the two masses and between 
each mass and ground (Fig. 2). 

The dynamical equations of motion for the system are used 
as constraints on the minimization of a suitable cost function, 
resulting in a feedback control based on the solution to an 
algebraic matrix Riccati equation. The classical eigenvector 
solution approach (see Potter [9]) is used to solve the Riccati 
equation and determine the optimal control. 

Theory 

Rotor Equations. The equations of motion for the rotor are 
derived using the Lagrangian approach with the fluid pressure 
on the inner wall of the first mass and the control force acting 
on the second mass giving rise to appropriate generalized 
forces. 

Consider the axially symmetric two-mass rotor of Fig. 1, 
modeled in Fig. 2 by linear springs, linear dampers, and 
discrete masses. The first mass (m{) is a hollow circular cup 
containing fluid, the second mass (m2) is a solid cylinder to 
which the control force F* is applied. 

Let (I, J,̂  K) be a Cartesian coordinate system fixed in 
space, (i, j , k) a Cartesianj:oordinate system spinning with the 
cup at speed fl*, and (f, 0, z) a cylindrical coordinate system 
also spinning with the cup (see Fig. 3). K, k, £ are all parallel 
to the neutral shaft. 

The position, velocity, and acceleration of the first mass 
expressed in the cup fixed coordinate system are: 

Rf 
Rf 
Rf 

= (*,-o*.v,)f+0',+o,x,)j' 
= (xi-2Q*yl~Q*2Xi)i + (yi +20*i, 

(la) 
(lb) 

-fi*^,)j (1c) 

Fig. 2 Equivalent rotor model 

The position and velocity of the second mass in the same 
coordinate system are: 

Rf = x2i+yj (2a) 
Rf = (x2-Q*y2)i + (y2+U'x2)i (2b) 

The kinetic energy T, the dissipation function D, and the 
potential energy Fare: 

T = y / n , R f . R f + y / n 2 R | - R J (3a) 

D = — c ,Rf .Rr+y£ 2 (Rf -R! ) . (Rr -R! ) 

+ yC3Rf.Rf (3b) 

V= y ^ R r . R f + y & R f - R D . C R T - R ! ) 

+ y £jRJ.R| (3c) 

(4) 
The control force applied at R2 *is 

V c r xcl ~r r yc$ 

The entrapped fluid pressure P(r*, 8, t) creates a distributed 
force 

d¥A = P(r* = a, 6, r)[cos0f+ sindfiadd dz (5a) 
applied at the cylinder wall located at 

Rj?, = Rf + a[cos0f + sintff] + zk. (5b) 

The generalized force in Lagrange's equation for xx is 
Lr2* dR Li •/I 

o 3x 
•P(r*=a, 6, r)[cos0i + sinfi j]ad6 dz (6) 

The 6 dependence of the pressure P(r*, 6, t) can be ex
panded in a complex Fourier series as 

P(r* ,e,t) = Re[J£Pn(r*, Oe''"9] (7) 

where P„(r*, t) is complex. 
Use of equations (1) and (7) in (6) yields 

Re\aL[ [cos fl( £ ] P„(a, t)[cos(nd) + /sin(«l9)^JJ (8) 

All terms where n ^ 1 vanish, leaving 
Re[ iraLPt (a, t)} - iraLPlre (a, t). (9a) 

The generalized force in the j ^ direction is similarly found 
to be 

Re{iraLPida, t)) = - ™LPljm(a, t). (9b) 

To streamline notation Pt(r*, t) will henceforth be written 
as simply P(r*, t) since it represents the only part of the fluid 
pressure that affects the rotor motion. 

Lagrange's equations of motion for the rotor are then 
derived in a straightforward manner. The system parameters 
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are now nondimensionalized using m, = mass of the empty 
cup, a = radius of the cup inner surface, w0 = (kx/mxy

/2 as 
the characteristic mass, length, and frequency. The following 
nondimensional terms are introduced: 

m = m2/mx 

d =cx/2mxw0 

c2 = c2/2mlu0 

c3 =c3/2mio}0 

kx =* 1 /WiWo = 1 

k2 = k2/mxu\ 

ki =ki/mlu>l 

r = r*/a 

z0=L/a 

R2=R2'/a 

f=b/a 

n=n*/w0 

H=irpa2L/mi 

rii=(xi-iyi)/a 

V2 = (x2-iy2)/a 

\l/ = (F*c-iF*yc)/miauil 

P(r,6,t) = P(r*,0,t)a/ml<4 

(10) 

where p is the fluid density, nondimensional cup mass is unity, 
and n is the nondimensional fluid density. The two-
dimensional displacements 17! and r)2, the control force I/-, and 
the pressure P are expressed in complex notation for ef
ficiency. 

The nondimensionalized, complex Lagrange equations for 
the rotor motion are then: 

variables, and the first term on the right-hand side of equation 
(13a) represents the pressure due to the solid-body rotation of 
the fluid. 

As before, only the n = 1 term in the pressure expansion 
affects rotor motion. Similarly, all terms in the velocity ex
pansions where n ^ 1 decouple from the rotor motion and 
therefore can be dropped. Henceforth u(r, t) and v(r, f) will be 
used to represent «,(/-, t) and vt (r, /), respectively. 

Use of (13a, b) in (12a, b) yields the following linearized 
nondimensional complex fluid equations: 

u(r,t)-2Qv(r,f)+ — d-l^lH + ( i ) 1 -2 /n i , 1 -Q 2 v 1 ) = 0(14a) 
ft or 

v(r, i) + 2Qu(r, t) + l-^-P(r, t) + /(i/, -2/fir/, - Q2rj,) = 0 (146) 
lir 

u(r,t) + iv(r,t) + du(r, t) =Q ^ 

r dr 

Equation (14c) can be solved for v(r, t) and substituted into 
(14b) to yield 

P(r, /)= — [" [2/Qr-r2 £-• -r~] u(r, t) 
•KZn tl drdt dt-1 KZo 

i^-ml-Q2]4 (15a) 

1 0 

0 m 

2 ( C ! + c 2 - / f i ) - 2 c 2 

- 2 c 2 2 ( c 2 + c 3 - i w O ) 

1 + k2 - fl2 - 2('fi(c, + c2) - k2 + 2iQc2 

-k2+2iUc2 k2+k3-mQ2- 2/'fi(c2 + c3) 

irz0P(r=l,t) 

Fluid Equations. The Euler and continuity equations for 
the fluid are 

4 + (V »q)q - fi* V + 2 Q * k x q + R? 

+ — VP(.r*,6,t) = 0 
P 

(12a) 

(126) V«q = 0 

where q = q(r*, d, t) is the fluid velocity relative to the cup 
and P(r*, d, t) is the fluid pressure. The first five terms in 
equation (12a) represent the total inertial acceleration ex
perienced by a fluid particle. 

To nondimensionalize equations (I2a,b), partially separate 
variables, and incorporate complex notation, the following 
representations are introduced: 

A / - * , < U ) = y P ( 0 * ) 2 ( r * 2 - 6 2 ) 

1W0 

(11) 

(13a) 

(136) 

Use of this in (14a) results in the following simple equation: 

The solution is 

u(r,t)=fl(t)+f2(t)/r
2 (16) 

where/! (J) and / 2 (0 are unknown functions of time. 
Applying the no-penetration condition at the wall boundary 

u(r=\, t) = 0, one finds tha t / i (0 = - / 2 ( 0 = 0(0. thus 

«( r ,0 = l8 ( / ) [ l - l / ' J ] (I7) 
At the free surface the radial position of the fluid can be 

expressed as 

r=f+M0,f) (18) 

where / represents the unperturbed (wave free) surface 
position and X, the perturbation (wave). 

At the free surface the pressure must be zero and the radial 
velocity of the wave must match the radial velocity of the 
fluid. Applying these conditions to (13a), the linearized 
nondimensional boundary condition at the free surface is 

u(r=f,t) = P(r=f,t) (19) 

where u„(r, t) and v„(r, t) are nondimensional complex scalar 

The time derivative of (15a) at r = / i s then evaluated using 
(17). The result is substituted along with (17) into (19) 
producing: 

[l + l]^2/«[l-l]/J-fi2[l-^]/3 
+ Oj1-2/Qij1n2;/,) = 0 (20) 

Equation (20) is free of any dependence on r but it is third 
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Fig. 3 Definition of coordinate systems (top view) 

order in time. Reduction to second order is accomplished by 
using equation (15a) at r = 1 in the first of equations (11), 
taking the time derivative of the result, solving for' rjt, and 
using it in equation (20). All terms then become second or 
lower order in time and the original fluid system has been 
reduced to one ordinary differential equation in three com
plex variables (the cup displacement rju the second mass 
displacement t\2» and 0, which measure the free surface wave 
velocity). 

The equation is 

- 2(c, + c2)m + 2c2v2 + (l - ii + j [1 + rf) /*" 

+ ( -1 - k2 + 2/fi[c, + C2])T/, + (k2 - 2iQc2)ri2 

2 ( l - - i ) ( l + f O / 3 - n 2 ( l - - i ) ( l + / ^ = 0 (21) •2iQ 

Combined Rotor Fluid Equations. Equations (11) and (21) 
can be combined into the single complex matrix equation 

[M"]{Z}+[C"){Z}+[K"]{Z}=^ 1 }• (22) 

where 

( Z ) : 

and [M"], [C"]> and [A"'] are determined from (11) and (21). 

State Space Formulation. By defining the state vector 

Z 
(10= ' 

and premultiplying (22) by [M"]~', the three second-order 

Real Part 
of 

Eigenvalue 
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" 

-

-

-

A 

/ \ _ y 

' I 
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10 

Fig. 4 System stability: real part of most unstable eigenvalue (R = 100) 
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\ 
\ 
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I 1 1 
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I i , 
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Fig. 5 System stability: real part of most unstable eigenvalue (R = 1) 

equations (22) can be replaced by six first-order equations in 
the following form: 

{Y}=[A]{Y) + {E}4, (23) 

Optimal Control Problem. The Control problem is to 
choose the force \l> so that the rotor-liquid system will be 
stable. There are may ways to choose the control force. We 
will choose \j/ to be that particular force that minimizes the 
following performance index 

/ = y \"[ [ r'T[Q] [ Y]+*tRMdt <24) 

where " t " denotes complex conjugation, [Q] is a positive 
semidefinite hermitian weighting matrix, and R is a positive 
weighting scalar. 

Applying the standard variational approach (see [10], 
Chapter 9), J is found to be minimized by the control force 

4,= -l&]T[KlinQ)/R (25) 
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Fig. 7 Controlled system: displacement of mass 1 (x1 versus t, y1 

versus t) 

where [K] is a solution to the algebraic matrix Riccati 
equation 
[K]IA] + [A1]T[K] + [Q]-[K]{E){EUT[K]/R = 0. (26) 

Equation (26) is solved using the eigenvector approach of 
reference [9]. 

To minimize J (equation (24)), the control must not let the 
rotor move very far from its nominal location, nor must it use 
much force. The operator can control the mixture of runout 
versus force that is acceptable by varying the elements in the 
weighting matrix [Q] and the weighting scalar R. 

For the control to be useful at all, it must stabilize the 
system. A quick check on the system eigenvalues will reveal 
the stability of the system. 

Equation (23) with \j/ = 0 represents the free (uncontrolled) 
system equations of motion. If one or more of the complex 
eigenvalues of [A] has a positive real part, then the system is 

Fig. 9 Controlled system (polar plot): displacement of mass 1 (x-| 
versus y ^ R = 100 

unstable. If the real parts of the eigenvalues are all negative, 
then the system is stable. 

With (25) used in (23) the controlled system equations of 
motion can be expressed as 

I Y) = (\A]--L[E) [& ) W ) { Y)=[Ae][Y). (27) 

By finding the eigenvalues of [Ac] and examining the real 
parts, stability of the controlled system can also be deter
mined. 

Results and Discussion 

The theory was used to stabilize a sample rotor with the 
following nondimensional system parameters. 

#2=5.0 C2=0.2 m = 0.1 

#3 = 1.0 C3=0.3 /x = 0.5 
C, =0.1 / =0.8 R = 100 
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Fig. 10 Controlled system (polar plot): displacement of mass 1 (x-| 
versus y-\)R = 100 

These parameters were chosen to give two well-separated 
critical frequencies with light damping, but they have no other 
significance. All calculations presented here use [Q] = [7] (the 
identity matrix). 

Figure 4 is a plot of the real part of the most unstable 
eigenvalue as a function of spin speed. Results are shown for 
both the uncontrolled and the controlled case. The un
controlled system is unstable to some degree over all operating 
speeds, though at system resonances the effect is greatly 
exacerbated (i.e., around 0 = 1.5 and fi = 5.0). The con
trolled system eigenvalues are negative for all spin speeds, 
indicating that the control has made the system stable. 

Figure 5 shows the same plot when the weighting scalar R 
has been reduced from R = 100 to R = 1. The control force 
does not now contribute as much to the penalty function 
(equation (24)) and the control force is able to make the 
system more stable. The price paid for this added stability is 
the use of more force. By choosing different values for the 
elements of the weighting matrix [Q] and the weighting scalar 
R, the operator can control the stability to an acceptable level 
without using too much energy. He has the freedom to adapt 
the penalty function to his needs. 

Figure 6 displays the free system (uncontrolled) response to 
an initial disturbance near the first critical speed (fi = 1.5). 
Only the motion of mass mx is shown. This is just the time 
history of the runout of the rotor. Note the exponential 
growth of the runout (revealing again the unstable nature of 
the uncontrolled system). Figure 7 shows the same system in 
the presence of a smart control force. This plot was made 
using a weighting factor of R = 100, placing a heavy penalty 
on the use of control force. As a result, the control force takes 
many oscillations to bring the system near the origin. Note 
that the system is now stable. 

An instructive way to look at the motion of rotors is to 
make a polar plot. This is just a plot of the displacement in the 
x direction versus the displacement in the y direction with time 

as the parameter along the curve (remember that x and y are 
measured relative to a rotating set of axes). Figure 8 is polar 
plot of the uncontrolled system. This graphically illustrates 
the unstable nature of the uncontrolled system. The motion 
quickly spirals away from the origin. Figure 9 shows that the 
system can eventually be driven to the origin. This figure used 
the heavy penalty on the control force (R = 100: compare 
Fig. 7). Figure 10 (calculated using R = 1) shows that the 
control can accomplish the mission (drive the system to the 
origin) in a much cleaner manner if the operator is not so 
stingy with the use of force. 

Conclusions 

The rotor system modeled by two discrete masses, the first 
of which is a cylinder partially filled with ideal fluid, is 
inherently unstable over all operating speeds. The system 
equations have been massaged into state space form and used 
in an optimal control analysis to find a feedback force that 
not only controls the system but does so in an optimal 
manner. Even more important, the system has been shown to 
be controllable with a single force applied at a location that 
does not necessarily coincide with the source of the instability. 
This allows a rotor to be controlled from its most convenient 
location (taking care of course not to try to control it from a 
location that corresponds to one of the nodes of the system 
that you are trying to control). This should make the theory 
more attractive to implement on a real machine (where it may 
only be feasible to implement a control at one of the bearings 
for example). Obviously each rotor geometry would have to 
be investigated separately as to its controllability. It would be 
an easy matter to use a different rotor model in the theory. 

The theory as applied in this paper assumes that all 
elements of the state vector (in this case runouts of both rotor 
masses and the motion of the fluid surface wave) can be 
measured and used for feedback. The displacements of the 
two masses can be easily measured using proximity probes. It 
is more difficult to measure the state of the entrapped fluid. A 
subsequent paper will explore the feasibility of controlling this 
system without actually measuring all of the state elements. 
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Flow Between Eccentric Rotating 
Cylinders 
In this numerical study of flow between eccentric cylinders, the size of the 
separation eddy and the position of the points of separation and reattachment are 
found to be Reynolds number dependent. The separation point moves in the 
direction of rotation upon increasing the Reynolds number, in contradiction to the 
first-order inertial perturbation theory of Ballal and Rivlin []]. The numerical 
methods employed in this study include Galerkin 's procedure with B-spline test 
functions. 

Introduction 
Flow between eccentric rotating cylinders is of considerable 

technical importance as it occurs in journal bearings. These 
bearings are in use in large rotating machinery, such as the 
turbines and generators of both conventional and nuclear 
power stations. Severe assumptions, viz., negligible cur
vature, fully developed flow in a channel of slowly varying 
cross section, and constant viscosity were made in the classical 
treatment of these bearings [2]. These assumptions lead to the 
formulation of what is now known as "Lubrication Theory." 
The theory served the designer well for decades, but the recent 
increase in size and speed of rotating machinery strained the 
theory [3]; there is now a serious need to update it. Tem
perature dependence of viscosity, and the fact that the 
viscosity of conventional lubricants decreases sharply with an 
increase in temperature, results in a considerable loss of load 
capacity relative to the predictions of classical theory. Fluid 
inertia has a seemingly smaller effect on pressure distribution 
under normal circumstances. It does, however, affect the 
ability of the bearing to respond to changes in load [4]. 
Sudden change in load may occur, e.g., if a turbine blade is 
lost through accident. 

Flow between eccentric, rotating cylinders is also of interest 
to the fluid dynamicist; the flow is strongly Reynolds number 
dependent and occurs in a simple geometry. The full 
nonlinearities of two-dimensional curved flows are present, 
yet due to the geometric simplicity there is hope for a com
plete analysis of the problem. For this reason the basic flow 
between rotating cylinders and the stability of this flow oc
cupied a prominent position in fluid mechanics, starting with 
the classical work of Taylor [5]. 

In one of the early publications on flow between eccentric 
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rotating cylinders, Wannier [6] discussed the problem without 
restricting the geometry; he used complex variable techniques 
to solve the biharmonic equation, satisfied by the stream 
function in Stokes flow. Wannier showed that the Reynolds 
equation of classical lubrication theory constitutes the zero-
order approximation to the Navier-Stokes equations, when 
the stream function is expanded in powers of the film 
thickness. Wood [7], using a modified bipolar coordinate 
system that reduces to polar coordinates as the eccentricity 
vanishes, analyzed the boundary layers that develop on the 
two cylinders at large Reynolds numbers. The eccentricity 
ratio is the small parameter of the perturbation analysis, and 
the solution is expressed in combinations of Bessel functions. 

The effect of inertia is estimated from a perturbation of the 
Stokes flow in Kamal's analysis [8]. This work clearly in
dicates a change in position of separation and reattachment 
points when increasing the Reynolds number, and the con
siderable effect the clearance ratio has on the critical value of 
eccentricity for the appearance of flow reversal. Kamal's 
inertial correction is incorrect, however, as was pointed out 
first by Ashino [9] and later by Ballal and Rivlin [1]; even the 
solution to the Stokes problem shows disagreement with 
recent results. Another small perturbation analysis with the 
eccentricity ratio as the parameter was published by Kulinski 
and Ostrach [10], Yamada [11] neglected curvature effects 
and solved the boundary layer equations for the case of a 
rotating outer cylinder. Assuming a perturbation series in the 
clearance ratio, Yamada showed that the results of the un
perturbed flow agree with those of lubrication theory. The 
importance of the inertial correction is found in the pressure 
distribution: the largest negative pressure is greater in 
magnitude than the largest positive pressure. 

DiPrima and Stuart [12] obtained linearized inertial 
corrections at small clearance ratios and at small values of the 
modified Reynolds number. Their zero-order approximation 
is identical to Lubrication Theory. Results presented by 
DiPrima et al. are in good agreement with those of Yamada. 

The perturbation analysis of Ballal and Rivlin [1], the most 
complete analysis to date of the flow between eccentric 
rotating cylinders, assumes large kinematic viscosity and 
provides analytical solutions to the problem in two cases: (1) 
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Fig. 1 Coordinate system and geometry 

negligible inertial effects (the zero-order approximation) and, 
(2) first-order per turbat ion of noninertial flow. The solution 
is valid for arbitrary rotat ion of the cylinders and in arbitrary 
geometry. Pressure distributions along the cylinders are 
calculated and the streamline pat tern is analyzed in con
siderable detail. Ballal and Rivlin also provide a number of 
conditions under which stagnation points, separation points, 
and eddys can exist, and discuss their location under various 
conditions. 

It appears from this brief examination of previous work 
that solutions that treat the applicable form of the Navier-
Stokes equations in their full nonlinearity and, at the same 
time, place no restriction on the geometry of the problem are 
not as yet available. Neither do we find significant attempts a t 
analyzing the problem numerically. 

The present research examines the isothermal flow of a 
Newtonian fluid between eccentric rotating cylinders, without 
making assumptions on the geometry of the problem. The 
treatment is numerical, it employs Galerkin 's method with B-
spline test functions, and retains the nonlinear terms of the 
Navier-Stokes equations. The stability of this flow and an 
extension to temperature-dependent viscosity will be the 
subject of subsequent papers . 

Analyt ical 

Relative to the bipolar coordinate system [a, /3) of Fig. 1 
the cylinders of radii ./?, and R2, R\ < R2, have represen
tation a = a{ and a = d 2 , a2 < a{, respectively. The 
Navier-Stokes and continuity equations are: 

C/Ksin/3 U dU V dU „ s inha 

h da h 30 a 

1 dp 

ph da 

C 1 / d2U d2U \ 

''lFl^a2~ + ~al2/ 
(cosha + cos/3) wr 2s inhd dV 

-U+-

a/52 

2sin/3 dV 

U dV 
• + 

ah 

V dV 
h da h d(3 

+ U2 

ah 

sin/3 

1 dp 

dp ah 

t / F s i n h a 

a 

d2V 

a J (Iff) 

(cosha + cos/3) 2sinhd dU 2sin/3 dU 

ah 

r 1 / d'V dLV \ 
VlW\~d6tr + ~dW) 

} ah d/3 ah da 

fi si 

-_ (hU) + - (hV) =0 
to 9/3 

(16) 

(2) 

Here h = a I (cosh a - cos /3) is the Lame' coefficient and a 
is the distance between the pole and the origin of the Cartesian 
coordinate system. 

If the inner and outer cylinders have constant angular 
velocities coj and o>2, respectively, the boundary conditions 
accompanying equations (1) and (2) are 

V=Rlwl; U=0 at a = a , (3a) 

V=R2w2; C/=0 at a = d2 (3*) 

In addition to (3) we require the velocity components ^ a n d 
K a n d the pressure/? to be periodic and single-valued in /3. The 
equation of continuity is identically satisfied by writing 

1 ty 1 H 
J ~ 

U= v=- (4) 
3/3 ' h da 

where \p(a,$) is the scalar stream function. \p must be made to 
obey the global continuity condition: 

#(a,,/3)-#(a2,|8)=e (5«) 
There is no loss of generality in replacing (5a) by 

# ( a „ / 8 ) = Q , 0 (a 2 , / 3 ) = O (5b) 

Here Q is the flow rate across any simple curve joining the two 
cylinders. 

The boundary conditions (3) when written in terms of the 
stream function \p have the form: 

1 H ! „ H 
3 a 

a^ 

--R,w, 

-R2u2, 

3/3 

dip 

= 0 at (,6a) 

-0 at a- •a2 (6b) 
h da L " 3/3 

Equat ions (1) and (2) are normalized next to facilitate 
numerical work. Define, for this purpose, nondimensional 
variables a, /3, \p, and the parameters 6, A, and e 

a — a\ 
/3 = /3/2TT, t = 

RW 
0 < a < l , 0 < / 3 < l ; 

5=-
R2 —R, 

R, 
A = a2-ai 

sinhA 
(7) 

s inha 2 —sinha [ 

0 in which case co = w2. We also where w = 03{, unless a^ 
use h = ah. In lubrication literature 5 is the radial clearance 
ratio and e, 0 < e < 1 is the eccentricity rat io. 

Elimination of the pressure by cross-differentiation and 
substitution of (2) and (7) in equation (1) reduces the latter to 

2 a./- '32i/< ; 3 ^ 32i£ ~) 

~dlF) •2hsi«i(£) 
dip 

da 
3 ^ 

~W + "do" 

C\27r/ 3/3 3/32 \27r/ 3/3 

1 
2i 

d2i 

"3a1" 

+ 
1 3i/< 33i/> 3\j, 33i// 

2TT 3/3 3a 3 

dxf, 

1 / A \ 2 3\j, 

J 7 r \ 2 7 r / ~3o~ dp 

d3\ls ' 1 dyj, 33iA 1 

27T 3a a/33a2 

2. 

+ — ( — \ 
+ 2TT \ 2 i r / 3/3 3a3/32 

1 f T d2\p / A \ 
= - [ 4 ( c o s h a + cos^)4A^-r+A(-) 

r/ A \ 2 d3\P 

3 a 3 J M L \ 2 7 r / 3/33a2 \ 2 T T / 

J_ /_A\ sv . i av 
IT \2ir/ 3a 

32^ 

33^ 
] 

^23/32 + " A 

dp 
3 34i£ 

3a 4 

1 / A \ 3 34iA T 
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over the unit square 

R={(a,j3): 0 < a < l , 0< j3< l ) 

The Reynolds number is defined as Re = R2u„/v, where n 
= 1, unless coi = 0 in which case n = 2, 

The boundary conditions (6) have the nondimensional 
counterpart: 

da \ <j) 
- A ( ^ - ) ( ^ ) « M 0 J 3 ) at a = 0 (9a) 

~A(?)(^) f l A ( 1 , | 8 ) at a=1 m 
da v a ' w \ | 

i,(.o,P)=Q/Ri2o>; W;i8)=o 
and the periodicity conditions on the velocity reduce to 

~daT 

9/3'" 

0 = 0 

dkt 
~daT 

Q<k<2 

l < w < 2 

(9c) 

(10a) 

(106) 
0=0 3)3" 

The periodicity condition on pressure will be written in 
terms of the averaged pressure P ((3): 

(11) P(1)=P(0); P = j o / > ( a , 0 ) da 

so as to avoid the necessity of differentiating the solution. The 
(3 derivative of the nondimensional pressure p, where 

P(a,(3) ' « » 2 

27rpcco 

is obtained from (lb); it is given by 

( « " ) 
(12) 

dp 
-Lf i av 

+ 
l a3V< 

] A/;2 LA2 3 a 3 ( 2 T T ) 2 3a3(32 

2 s i n h a ( 1 32i/< ' 1 32i/< ~> 

A 

^[s^C 
I A2 3 a 2 ^ (2TT)2 3/32 J 

a2!/* 3 ^ 32i/< 3iA V 

sin/3 r / 1 3i£ \ 2 . / 1 d\js \ 2 

A l\A 3a 
(13) 

Numerical 
In this formulation the system of equations (8)-(ll) 

represent the basic flow between eccentric, rotating cylinders. 
We seek the weak form of solution 

/ = 1 y = l 

A ^ - 2 / ^ , - 2 

= S E ^jBi(a)BJW) 
i=3 y = 2 

" 0 , 2 

+ E EiMM«>*;<0) 
y=i S-=i 

+ E lM», ( « )W) 
i = N „ - l ^ 

" « - 2 2 

+ E ElMM«)By<0) 
i = 3 V J = 1 

+ E ^fi/(«)5y(/3) 

(14) 

Here lB,(a) ) , " l is a set of normalized 5-splines in a of 
order ka and smoothness index va defined on the partition 

7r„: 0 = a , < a 2 < . . . < a , a + 1 = l (15) 

We assume smoothness va. = v, 2 < i < I, and a knot 
sequence (tt} ,=

a
1
+ a given by 

a1=ti=t2= . . . =U 

aj = tka + (j-i-2)rf„ + l . . . =t ka + <J-\)da 
(16) 

2<y'</a; da=ka-va. 

The set of normalized B-splines in /3, [Bj(fi) }j£\ is defined 
similarly. The dimension iv"a X Np of the approximating 
subspace is given by [13] 

' a ' a 

^»=E(*«-"«/); i V / 3=E(^ -^ , ) 
1=2 j=2 

The error in approximating by cubic splines is inversely 
proportional to (N- l)4 [14]. 

In the second expression of (14) we have grouped the set T0 

that is associated with the essential boundary conditions. 
The set 

T=[Bi(a)BJ(l3): 3 < / < i V „ - 2 ; 2xjsN0-2) (18a) 

will provide the basis for functions defined on the region R 
which vanish on dR0, viz., that part of the boundary dR for 
which the boundary conditions are essential. 

The set 

T0=[Bi(a)Bk(p), Bm(a)Bj($)) (186) 

l < / < i V a ; 2<y<7V ( 3-2 

* = 1 ^ - l J V j ; m = \,2,Na-\,Na 

when restricted to 3R0 provides a basis for functions defined 
on dR0. 

In the application of Galerkin's method approximation (14) 
is substituted into equation (8), and the resultant equation is 
multiplied through by the test set r. Integration over the unit 
square R yields the Galerkin coefficients: 

X2, 
(P) 

X3 ijk 

X4 
(p) 
ijkl 

= \ B}c) (x)B)d) (x)dx 

= \ \ \ b ) (x)B)c) (x)B[d) (x)dx 

= | B\a) (x)BJb) (x)B{
k
c) (x)BJd) (x)dx 

(19) 

where 

a<b<cs,d 

p= a + b + c + d + 1 (if c> 0) + 2 (if b > 0) + 3 (if a 
> 0) and X = A when x = a and X = B when x = /3, and the 
following set of nonlinear algebraic equations: 

N„ NR 

A3 — — ( 1 ) — ( 2 ) 
%'nqs 

* A3 — — i — -

E E ( ^ J ^-£i™44^rP54J; 
n,p,r=l n,q,s=\ x v z " 

+ 2irAC\mnAAlmprMJnqs + 
A4 

(2TT) 
- C 2 ^ 4 ( 0 ) 54 ( 4 ) 

2 ±zi;mniJ^?impr±^ijnqs 

-J*) + A ±2mnAAjmprBAjnsq AHmnBAjmq (A4jmpr +A4jpmr +AAmpjr) 
TTjC) J (4) 3 (4) 

(2TT) 
2 *~*mn£3imrp \M3jnqs ~*~ MQjqns ~T~l¥*nqjs ) 
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(2TT) 
W Ad ( 1 ) RZ ( 4 ) 

-AH A4W M0) 

•}) 
1 

Re 
E E ^UA^CS^^^BS. (0) 

jni 
m,p = l n,q=l 

"T" « l^mn£iJ!imp2.2jnq~t~ 2=L*:mn£L2impi±2jnq (20) 

r(0) ;(4) (4) ;(2) 
47rAa™fi3;„;(43;,;p+43™i,) - 2A2C±mnA3)J,pm 

A4 

r (D 

;(0) r(4) (4) , ;(2) 

2TT2 £1 mnA_iim„(o3jnq+ B^njq) ^ HmnA3jm„o3 
r(2) 

(2TT)3 

:«)] = 

3 < / < J V a - 2 ; 2 < y < ^ - 2 

+ I 3 ^ + 2 f i 3 ^ - { B „ ( / 3 ) f i ; ( ^ ) ^ ' ( / 3 ) ) ^ i ) ] = 0 

In (20) the CI m „ , 1 < m £ iVa, 1 < « < A^, represent the 
Fourier coefficients of #3 sin /? relative to the approximating 
subspace fl,(a) 5 ;(/3), 1 < / < Na, 1 < j < Np. This is in
dicated by the notation 

2//3 sin/3 =(C1,„,„ j f r " " 

In a similar manner, we also have 

(21a) 

2/i3sinha=[C2 i=^OT,« J 1,1 
^ • " f l 

4/)3(cosha + cos0) = (C3m,„ }™f 

A2 = ( H M . l ^ 

(216) 

The boundary condition on the cylinders, equation (9), are 
satisfied in the weak form. They determine 4 X JVj of the 
unknown coefficients: 

Y\J Y Y2j V g , ^ j 

</w, (22) 

Here 

/?,co \ co / R, \ co / Ri 

and 

/K0./3) = ( / / , ) ? ; h(l,P) = {Hj}^ (23) 

The periodicity conditions (10) imposed on the stream 
function and its derivatives are satisfied by setting 

h,\ - h.N/j 

h,\'- h,i'+ h.Np - h.Nfi-1 = o 

N „ - 2 kf, Np 

3</<7V - 2 

E {EhjBfm- E ^/(i)]=o; 
/=3 v y = l i = NB-ks 

The formulation is completed with the discretized form of the 
pressure constraint (11) 

N„ NR 

E E ^4; 
p , l = l <7J=1 

1 

(2ir)2A 2 A mPqAiPWq1 + ~ mPqA2{
Pim

(q] 

(2TT)2 — pq~ S^fj 
a e i _ _ _ 

+ Re E E ^,™(-~—r-2ffiTOd3Z'fi3 
P,i,m=l qj,n=l x Z 7 m 

2 T A 2 *2±'PQ—Pi" — <l"J A2 03pq^ipimSAqin 

(1) 

" ("2^)2 ff^pqdSpimBSqjn) =0 

In (25) we have 

(25) 

1 
= [H2ll\"ffi-X-

sinha 
= imv)i.f 

-f 4.%nmnD^jnq\S\3mjp TS13jmp T 6St3imp) T j nmnSlDjmp\JJ3.njq if-mrff9 
(26) 

Equations (20) and (25) represent (Na~4) + (Np-3) + 1 
conditions for the unknown coefficients \j/y ,3 < / < 7Va - 2, 2 
<j<Np-2, and the yet unknown nondimensional flow rate 
V̂ *. Each of these conditions is in the form of a nonlinear 
algebraic equation. 

The set of nonlinear equations were solved by an IMSL 
routine, using a Newton-like method [15] that is at least 
quadratically convergent. For Stokes flow calculations the 
process was initiated with zero starting values, it required 
6-30 min CPU time on the PDP-10 for Na = 8, N0 = 11 and 
took 10-20 iterations to converge. 

Computer times increase drastically and conditions become 
more demanding at Re > 0. The domain of starting values 
that yield convergent solutions shrinks with increasing 
Reynolds number and it was necessary to use continuation in 
Re. A typical sequence would be Re = 0, 0.5, 1, 5, 10, 20, 30, 
35, 40, 50 (at 5 = 1.0 and e = 0.5). 

Evaluation of equation (20) at each stage of the iterations 
requires multiple summations. Summations are performed 
only on nonzero coefficients of (19), and as there are ~Naw'" 
nonzero coefficients in, say, a, multiple summations in a 
require Naw% operations. Here m is the multiplicity of the 
summations, i.e., the number of indices of the coefficients, 
and wa = 2ka - 1 is the band width. For small Na the number 
Naw% is not a particularly tight upper bound on the number 
of nonzero coefficients and a number smaller than wa could 
be used. 

To evaluate the viscous contribution to the NEQ equations 
of (20), NEQ = {Na-4) X (Np-3), we perform ap
proximately Ns — 9 x NEQ x w4 operations, as there are 
nine viscous terms in each equations. The corresponding 
number for inertial terms is Nj = 8 x NEQ x w6. Thus the 
number of operations required for an inertial solution is 
approximately w2 times the number of operations required 
for solution of Stokes flow. 

The Newton-like method [15] employed for solution of the 
nonlinear algebraic system requires (/Vgg + 3NEQ) /2 function 
evaluations per iterative step, as compared to (NEQ + NEQ) 
for Newton's method. Thus Nr, the total number of 
operations per iteration step, is given byNT ~ (2WNEQ)3. For 
Na = 8, N0 = 11 and ka = k0 = 4 (cubic splines) in Stokes 
flow we have NT ~ 6 x 107 operations for each step in the 
iteration. Doubling the dimension of the appproximating 
subspace would necessitate performing NT ~ 6 x 109 

operations per iterative step. On the PDP-10 computer of the 
University of Pittsburgh these numbers represent 5 min and 
50 min, respectively, for a total of 10 iterations. To obtain 
corresponding figures for inertial flow, Re > 0, multiply by 
w2. Thus Na = 8, Np = 11 represents the practical upper 
bound on the size of the system, dictated by the time 
requirement on the computer available to us. 
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Discussion and Results 

Results will be discussed under two headings. First we 
examine the accuracy of the numerical method relative to the 
work of Ballal and Rivlin [1]. Next we describe what appear to 
be new results concerning inertia effects in flow between 
eccentric rotating cylinders. In this latter section we also make 
comparison between our results and those of Ballal and Rivlin 
[1] and DiPrima and Stuart [12]. For small 8 our results are, 
as expected, close to the results of classical lubrication theory. 

Accuracy. Application of Galerkin's method makes 
solution of the steady state problem feasible. We have applied 
Galerkin's method on previous occasions. When the bound
ary conditions are homogeneous, we find that 5-splines are 

CL)2=0 a>2=0 

attractive test functions. They have good approximating 
properties, and because they have local support, the storage 
requirement of a Galerkin coefficient is N x {2k- l ) m , where 
m is the dimension of the coefficient. 

In comparison with the Chebyshev polynomial expansion 
scheme for the Orr-Sommerfeld equation representing 
Poiseuille flow between parallel plates, e.g., we find that at Re 
= 20,000 the Galerkin, 5-spline formulation gives Ct = 
0.237394 + / 0.00373133 for the first eigenvalue on a 36-bit 
machine in single precision [16]. The corresponding value by 
Chebyshev polynomials is C, = 0.23752649 + ;' 0.00373967, 
obtained by Orszag [17] on a 48-bit machine in single 
precision. Z?-splines were also tested in a two-dimensional 
steady state problem, and performed well. For through flow 
between parallel rotating disks, results obtained with 5-spline 
test functions [18] showed excellent agreement with ex
perimental data from LDV measurements and also with 
calculations employing circular functions [19]. It is also 
noteworthy that implementation of the Galerkin, fl-spline 
strategy is almost trivial, if only one makes use of the ex
tensive subroutine package of de Boor [13]. 

Accuracy of the Galerkin, fi-spline formulation in the 
present case is investigated for Stokes flow; several accurate 
solutions of this flow are available in the literature. 

The effect of increasing the dimension of the ap
proximating subspace is shown in Table 1. Here \j/* is the 
nondimensional flow rate across any simple curve connecting 
the cylinders. The table also shows the corresponding value by 
Ballal and Rivlin [1]. Table 2 displays the azimuthal velocity 
component at various points (a, (3) of the flow field, for 
various order approximations. It may be seen that the change 
in \p*, and also in V$ at most points, is in the fourth 
significant digit as the number of equations representing the 
flow is changed from 17 to 29. 

Comparison of azimuthal and tangential velocity with that 
of Ballal and Rivlin shows excellent agreement for the various 
clearance ratios tested as does the distribution of average 
pressure. Figure 2 shows streamline pattern of our numerical 

Table 1 Nondimensional flow rate (Stokes flow, t = 0.5, 
(R2 -R1)/Rl = 1.0) 

Fig. 2 Streamline pattern; Stokes flow (a2lo>-\ 
0.25; (b)e = 0.35; (c)c = 0.5; (d)( = 0.8) 

Ballal and 
Rivlin [1] 

^ = 7 
N„ = S N„ N„ = 8 

0.2949077 0.2938225 

Table 2 Azimuthal velocity (Stokes flow, e = 0.5, (R2 -R1)/Rl = 1.0) 

0.294133 0.2943499 

Ballal 
and 

Rivlin [1] 

N„ 

AL=8 

N0 = 9 

7V„ = 8 

7V> = 11 

0 = 0.0 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

29.0000 
17.4419 
8.4619 
2.2295 

-0.8420 
0.0 

29.0000 
21.5330 
14.8975 
9.0828 
4.1036 
0.0 

29.0000 
26.3507 
22.2753 
16.6682 
9.3372 
0.0 

29.0000 
17.5889 
8.4712 
2.1623 

-0.9753 
0.0 

/3 = 0.25 

29.0000 
21.4878 
14.8373 
9.0259 
4.0661 
0.0 

/3 = 0.50 

29.0000 
26.3859 
22.2534 
16.5546 
9.1785 
0.0 

29.0000 
17.4657 
8.4580 
2.2074 

-0.9243 
0.0 

29.0000 
21.5175 
14.8419 
9.0107 
4.0474 
0.0 

29.0000 
26.3368 
22.2133 
16.5641 
9.2429 
0.0 

29.0000 
17.4939 
8.3585 
2.1582 

-0.8406 
0.0 

29.0000 
21.5319 
14.8623 
9.0389 
4.0826 
0.0 

29.0000 
26.3568 
22.2223 
16.5947 
9.3084 
0.0 
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Fig. 3 Tangential velocity in Stokes flow (w2'wi = 0, { = 1.0, e = 0.5. 
o, present solution; — , Ballal and Rivlin [1]). 

Fig. 4 Averaged pressure in Stokes flow (oi2/ui = 0, S 
o, present solution;—, Ballal and Rivlin [1]). 

1.0, t = 0.5. 

solution when the inner cylinder is rotating. Figure 3 displays 
the corresponding tangential velocity at e = 0.5 at three 
values of the /3 coordinate and the distribution of average 
pressure is shown in Fig. 4. Typical streamline pattern with 
the outer disk rotating and inner disk stationary are plotted in 
Fig. 5. For e = 0.5, Figs. 6 and 7 compare our results for 
azimuthal velocity and averaged pressure with those of Ballal 
and Rivlin [1]. Finally Fig. 8 displays the streamline pattern 
for counterrotating disks, o>i/co2 = - 2 . The corresponding 
azimuthal velocity plot is shown in Fig. 9. 

As may be concluded, the analysis of Ballal and Rivlin and 
the present numerical solution give near identical results for 
Stokes flow; that they also agree well with conclusions of 
classical lubrication theory will be discussed in connection 
with inertial solutions. 

Inertial Effects. Figure 10 displays the streamline pattern 
for inertial solution at increasing values of the Reynolds 
number with the inner cylinder rotating and the outer cylinder 
stationary. Figure 11 shows corresponding pressure 
distributions. For Stokes flow, Re = 0, the pressure 

(a) (b) 

(c) (d) 
Fig. 5 Streamline pattern; Stokes flow (afla2 = 0, S = 1.0; (a) c 
0.25; (b)e = 0.35; (c)e = 0.5; (d)c = 0.8) 

Fig. 6 Tangential velocity in Stokes flow (W1 /w2 
o, present solution; — , Ballal and Rivlin [1]). 

0.8 1.0 

a 
0,S = 1.0, e = 0.5. 

distribution is symmetric with respect to the line of centers, /3 
= 0.5. The effect of fluid inertia is to decrease the value of the 
positive pressure and to increase the magnitude of the 
negative pressure relative to P(0). This effect has already been 
predicted from approximate analyses in hydrodynamic 
lubrication (cf. [20]), although inertia effects seem to be less 
important there. Figure 12 shows the pressure distribution at 5 
= 0.046, as calculated by the present method at Re = 100. 
This figure also contains results from the small perturbation 
solution of DiPrima and Stuart [12] at Re = 100, the 
noninertial solution of Ballal and Rivlin [1] and the classical 
noninertial lubrication approximation [3]. We may conclude 
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OJ2=0 OJ2=0 

Fig. 7 Averaged pressure in Stokes flow (wi/w2 = 0, 5 = 1.0, e = 0.5. 
o, present solution;—, Ballal and Rivlin [1]). 

Fig. 8 Streamline pattern; Stokes flow (u-t /a>2 

I.O 
V/R2ai2 

0.8 h 

- 2, 6 = 2.33, i = 0.5) 

Fig. 9 Tangential velocity in Stokes flow (u1 la2 = - 2, S = 2.33, e = 
0.5). o, present solution; — Ballal and Riolin [1]. 

that lubrication theory provides good pressure profiles at 
small values of the Reynolds number.' 

There are three important conclusions to be drawn from 

This comment should not be interpreted to mean that fluid inertia has in
significant contribution in hydrodynamic lubrication. In lightly loaded journal 
bearings, e.g., fluid inertia effects result in an attitude angle in excess of ir/2, 
leading to instability [4]. 

CU2=0 

(d) (e) (f) 
Fig. 10 Streamline pattern; flow with inertia (ui2lu-\ = 0; < = 0.5, 6 = 
1.0; (a) Re = 0.0; (b) Re = 10; (c) Re = 20; (cf) Re = 30; (e) Re = 40; (0 Re 
= 50) 

Fig. 11 Averaged pressure; flow with inertia (u2/ui = 0, e = 0.5, 5 
1.0) 

Fig. 10: (0 the center of the separation eddy moves in the 
direction of rotation of the cylinder, (if) the reattachment 
point moves in the direction opposite to rotation, and, (Hi) the 
separation point moves in the direction of rotation when the 
inner cylinder is rotating and the outer cylinder is stationary. 

Conclusions (0 and (if), as stated in the foregoing, are in 
qualitative agreement with findings of Ballal and Rivlin [1]; 
however conclusion (Hi) is in contradiction with results of 
their first-order perturbation theory. The dependence of the 
position of separation and reattachment points on Reynolds 
number is depicted in Fig. 13. The angle 6 plotted here is the 
polar angle. 

0 = tan - i 
sinhajsiniS 

1-coshd^cosjSJ 

measured relative to the inner cylinder from the x-axis. 
Obrien, Jones, and Mobbs [21] have measured the position of 
the separation and reattachment points for some con
figurations of the rotating cylinders and, in qualitative 
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-600 

Fig. 12 Averaged pressure (w2/«i = 0, 6 = 0.064, e = 0.75. Inertial 
solution, Re = 100: — , present method; o, DiPrima and Stuart [12]. 
Noninertial solution: + , Ballal and Rlvlin [1]; — , lubrication theory [3]). 

IO 20 30 40 50 
Re 

100 

r° 

80 

60 

40 

20 

0 

-20 

-40 

-60 

-80 

-I00 

Fig. 13 Polar angle of separation and reattachment points; flow with 
inertia («2'«>1 = 0, c = 0.5, « = 1.0. — , separation point; — , reat
tachment point). 

agreement with us, found the separation point closer to the x-
axis than the reattachment point. 

Figure 14 displays streamlines obtained with the outer 
cylinder rotating and inner cylinder stationary. The inertial 
effect is quite noticeable. The center of the separation eddy 
and the separation point both move in the direction of 
rotation on increasing the Reynolds number. The reat
tachment point, on the other hand, moves in the direction 
opposite to rotation, at least at this value, e = 0.5, of the 
eccentricity ratio. Figure 15 depicts the polar angle of 
separation and reattachment points at e = 0.5 for various 
values of Re. The average pressure is plotted in Fig. 16 for 

(C) (d) 
Fig. 14 Streamline pattern; flow with inertia (a-tlu2 = 0, e 
1.0, (a) Re = 0; (b) Re = 10; (c) Re = 20; (d) Re = 30) 
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Fig. 15 Polar angle of separation and reattachment points; flow with 
inertia (u-|/w2 = 0, « = 1.0, e = 0.5. — , separation point; — , reat
tachment point). 

stationary inner cylinder at various values of the Reynolds 
number. 

The direction of movement of the separation points 
requires further study for rotating outer cylinder. For 0.2702 
< e < 0.573 "both separation points are displaced in the 
opposite sense to that of the rotation of the outer cylinder by 
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Fig. 16 Averaged pressure; flow with inertia (w-|/u>2 = 0, e = 0.5, 5 
1.0) 

the first-order inertial correction," according to Ballal and 
Rivlin [1]. They further state that "if 0.573 < e < 1, the 
separation points are displaced in the same sense as that of the 
rotation of the outer cylinder." In Fig. 17 we plot the polar 
angle of the separation point against the eccentricity ratio e 
for two values of the Reynolds number. It is concluded that 
the point of separation in Stokes flow is always upstream the 
point of separation in inertial flow of Re = 20. 

The angular position of the reattachment point in both 
Stokes flow and inertial flow is shown in Fig. 18. According 
to our calculations, the reattachment point in Stokes flow is 
upstream from the reattachment point of the Re = 20 flow 
when in the eccentricity range 0.53 < e; when in the range 
0.31 < e < 0.53 this situation is reversed. 

- 1 4 0 -

Fig. 17 Polar angle of separation point (o>i/u2 = o, « = 1.0. Present Fig. 18 Polar angle of reattachment point (W1/w2 = 0, S = 1.0. Present 
solution: — , Re = 0; — , Re = 20.0, Re = 0; Ballal and Rivlin [1]). solution: — , Re = 0; — , Re = 20. o, Re = 0; Ballal and Rivlin [1]). 

(f) 
Fig. 19 Streamline pattern; inertial flow(wi/w2 = 0, 6 = 1.0, Re = 20; 
(a), £ = 0.27; (b), c = 0.3; (c), c = 0.4; (d), e = 0.6; (e), e = 0.65; (/), c = 
0.75) 
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Fig. 20 Schematics of the movement of separation points 

Figure 19 displays streamlines for rotating outer cylinder 
and various eccentricity ratios at Re = 20. It is indicated here 
that the resolution of our calculation breaks down at high 
eccentricity, due to machine limitations on the number of 
Galerkin terms we are able to carry. Finally, Fig. 20 offers a 
schematic comparison of the main results of Ballal and Rivlin 
with our calculations. 

Three possible reasons for the discrepancy between our 
results and the first-order perturbation analysis of Ballal and 
Rivlin have been advanced. These are: 

(1) Ballal and Rivlin's solution is a small Reynolds 
number perturbation of the Stokes flow (see footnote on p. 
240 of paper by Ballal and Rivlin), and thus its validity is 
questionable for Re > 1. Their Fig. 29 has Re = 148.8. 

(2) At high values of the Reynolds number, the first-order 
inertial correction, as supplied by Ballal and Rivlin, might 
completely be overshadowed by subsequent terms of the 
perturbation series, and the series diverges. 

(3) Ballal and Rivlin calculate the flow rate from the 
Stokes problem and assume it to also apply to the first-order 
inertial correction. Thus their first-order correction does not 
satisfy the correct boundary conditions, and in consequence it 
does not insure continuity of pressure nor satisfaction of 
global flow continuity. We, on the other hand, by satisfying 
pressure continuity for the inertial flow, satisfy the boundary 
conditions at all values of the Reynolds number. 

Our results that the separation point moves in the direction 
of rotation on increasing the Reynolds number is acceptable 
on physical grounds. There are instances, e.g., cylinder in 
cross flow, where it is well known that, at least in some region 
of the laminar Reynolds number, speeding up of the flow has 
the effect of delaying flow separation. 
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Asymmetric Flow of a Cylindrical 
Particle Through a Narrow 
Channel 
The steady flow of a cylindrical particle with a circular or elliptic cross section 
through a narrow channel is investigated on the basis of the Stokes equation with 
emphasis on effects of its asymmetric location and orientation. Numerical analyses 
are carried out by use of the finite element method to determine the drag, lift, and 
torque acting on the particle as well as the velocity of the particle floating freely in 
the Poiseuilleflow. The numerical results are applied to blood flow in capillaries. 

1 Introduction 

Since capillary blood flow should be understood under the 
interaction of individual red blood cells (RBC's) with the 
vessel wall, a number of theoretical studies have been made on 
the motion of particles through microvessels. Most studies are 
based on approximation theories; one is the lubrication theory 
and another is the expansion method in terms of small 
parameters such as the ratio of particle size to its distance 
from the vessel wall. The lubrication theory becomes inac
curate except in the narrow gap between the particle and the 
wall [1]. The expansion method is also inapplicable to the 
motion of particle in microvessels where the particle size 
becomes comparable to the vessel diameter. Thus, some 
numerical analyses have been made on the capillary blood 
flow, using the finite element method [1,2]. Most analyses are 
restricted to steady and axisymmetric flows of particles with 
axisymmetric shape through circular tubes. 

Quite recently, it has become clear in both in vivo and in 
vitro experiments that RBC's in capillary vessels are in 
asymmetric motion rather than in axisymmetric motion [3-5]. 
The flow patterns of RBC's are greatly influenced by their 
number density (hematocrit) in vessels; in narrow capillary 
vessels, RBC's travel in single file near the centerline at low 
hematocrit, while RBC's are drifted toward the wall floating 
in multifile at higher hematocrit [5, 6]. Thus, it is very im
portant in microvascular flow dynamics to elucidate the 
asymmetric flow of a particle with asymmetric shape at a 
position in microvessels. There are few theoretical studies 
with respect to asymmetric flow of a particle except two cases: 
the steady flow of a spherical particle placed slightly off the 
axis of vessel by the expansion method [7, 8] and a tightly 
fitting particle based on the lubrication theory [9]. 

In this paper, we numerically investigate the steady motion 
of a particle in a narrow two-dimensional channel with special 
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emphasis on effects of its asymmetric location and orientation 
in relation to capillary blood flow. According to experimental 
studies of RBC rheology, RBC's can be easily deformed by 
the external force, and moreover, their thin membrane, 
containing an internal viscous fluid, may be in a tank-treading 
motion in shear flow [10, 11]. These natures of RBC's may be 
of mechanical significance for their motion through a very 
narrow channel, but here we adopt the basic model of RBC: 
(/) RBC is rigid, and (//') it is prescribed to be a circular or 
elliptic cylindrical particle. This is mainly for the reason that 
the RBC shape may be kept almost constant in steady and 
unidirectional flows considered here, and that the governing 
equation for the membrane motion is not yet well understood. 

Concerning the equation of motion, we assume that the 
surrounding fluid is incompressible Newtonian. Then, the 
fluid motion is assumed to obey the Stokes equation since the 
Reynolds number characteristic of RBC motion is much less 
than unity. In the analyses, we use the finite element method 
in terms of the primitive variables, namely velocities and 
pressure [12]. 

2 Formulation of the Problem 

Referring to the rectangular coordinates {x, y), the Stokes 
equations for the two-dimensional steady motion of an in
compressible viscous fluid are 

-•H V Lu, 
dp , 
dy 

(1) 
dx 

where V2 = d2/dx2 + d2/dy2, /a is the viscous coefficient, p 
is the pressure and u = (u, v) is the velocity vector. The 
equation of continuity is 

du dv 

dx dy 
(2) 

The coordinate system may be so chosen that the walls of 
channel are at y = ± d, and the center of a cross section of 
the particle is at the position (0, dd) (Fig. 1). The boundary 
conditions to be satisfied are 

u = 0 at y=±d, (3) 
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Fig. 1 Flow configurations 

Fig. 2 Drag coefficient of a circular cylindrical particle at the cen-
terline of the channel (o : case (0 in negative sense and o: case (if) in 
positive sense) and Wakiya's result for X = 0.2 (•: case (I) CD = -16.5, 
and x: case (//) CD = 16.1) 

u = LL on the surface of the particle, (4) 
15 

and 
u = Us 

where Uc and U. 
far from the particle, 

to be prescribed. 

(5) 
are to be prescribed. In numerical 

calculations, we apply the condition (5) at x = ± 1, where 1 is 
taken sufficiently greater than the half width of the channel. 

The equivalent variational functional for the preceding 
equations may be obtained as 

™-Si.M(£)'*(|) 
+ lKYy + Tx) \-pyYX

 + Yy)\dS (6) 

where Q is the domain surrounded by the two walls, the 
particle and the planes at x = ± 1. The property that J is 
stationary with respect to (u, p) under the subsidiary con
ditions (3)-(5) on the boundary of 0 provides equations (1) 
and (2) as the Euler equations [12]. 

In the present analysis, we use the finite element method. 
The application of variational principles to equation (6) yields 
simultaneous algebraic equations for the values of velocity 
components and pressure at the nodes. Using the values 
obtained, we can calculate the quantities of interest such as 
shear stresses and then the resultant force T = (FX, Fy) acting 
on the particle per unit length together with the torque T 
about its center (for the finite element approximation, see the 
Appendix). 

3 Results 

The particle is assumed to have a circular cross section with 
radius Ad or an elliptic cross section with semiaxes a and b 
(a>b). For Uc and \)s in equations (4) and (5), the drag 
coefficient of the particle CD, the lift coefficient CL, and the 
torque coefficient CT are defined as 

CD=Fx/liU, CL=Fy/^U, CT=T/,xUd, (7) 

where U represents the magnitude of Uc or the maximum 
value of \JS. 

In numerical calculation, we take l/d = 2.5 considering the 
inlet length of low Reynolds number flow into a channel [13]. 

3.1 Circular Cylindrical Particle. 

(a) Lying at the Centerline of the Channel. The two 

7,25 

10 

\ 

\ 

\ o \ 

0-5 
\ 

10 

Fig. 3 Translating velocity ratio of a circular cylindrical particle 
floating freely at the centerline of the channel 

problems are considered: ((') the particle moving with a 
constant velocity Up in an otherwise quiescent fluid, i.e., Uc 
= {Up, 0) and Us = (0, 0); and (») the stationary particle in 
the Poiseuille flow with the mean velocity Um i.e., Uc = (0, 0) 
and Vs = (3/2>U,„ (1 - y2/d2), 0). The drag coefficient CD 
calculated in the two cases are shown in Fig. 2. The value in 
case (i) is plotted in the negative sense, while in case (/'/') it is 
plotted in the positive sense. For comparison are also shown 
the theoretical points obtained by Wakiya for the special case 
of A = 0.2 [14]. Our numerical results agree well with his 
theoretical result. 

The superimposition of the two cases can provide the 
solution for a particle floating freely in Poiseuille flow. 
Assuming that the resultant force vanishes, we can determine 
the particle velocity. The ratio of the particle velocity Up to 
the mean velocity U,„ of the surrounding fluid is plotted in 
Fig. 3. It is interesting to note that Up is always larger than 
U,„ but approaches U,„ as X tends to unity. 

(b) Lying off-center of the Channel. Three cases are 
considered: (;'), («). in («) and (Hi) the particle rotating with 
the velocity Ur about the axis of cylindrical particle in a fluid 
at rest. In Fig. 4 are shown the drag coefficient CD and the 
torque coefficient CT against the deviation coefficient 5 for X 
= 0.5. It is seen that the particle experiences maximum drag 
at 3 = 0 for (/) and (;/)• If we superimpose the three cases to 
achieve both the net drag and torque equal to zero, we can 
determine the translating velocity and the angular velocity of 
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Fig. 5 Translating velocity ratio (o) and angular velocity ratio (a ) of a 
circular cylindrical particle (X = 0.5) floating freely 

Fig. 6 Pressure distribution on walls for a circular cylindrical particle 
(X = 0.5) floating freely ( A : pressure on either wall for a = 0, • : 
pressure on the wall nearer to the particle for 6 = 0.25 and o: pressure 
on the other wall for 6 = 0.25). The pressure is taken to be zero at x = 
- 1 (1 = 2.5d). 

the particle floating freely. Figure 5 plots the ratios Up/Um 

and Ur/U,„. We note that increasing 5 decreases the 
translating velocity but increases the angular velocity. 

The pressure distribution on both walls, p„, is shown in 
Fig. 6 for 6 = Oando = 0.25 in case of X = 0.5. It is seen that 
the pressure changes markedly on the wall nearer to the 
particle. To see how the wall pressure changes with the 
particle position, let us define the additional loss of pressure 
head a due to the presence of the particle 

1-5 

10 

05 

0-25 0-5 

Fig. 7 Additional loss of pressure head due to the presence of a cir
cular cylindrical particle (X = 0.5) floating freely 

A(pw - A i ) 
(8) 

dpQ/dx-d 

where p0 is the pressure distribution on the wall without the 
particle, A means the difference between the up-stream (at x 
= - 1 ) , and down-stream values (at x = +1). Figure 7 is a 
plot of the additional loss of pressure head against 8 for X = 
0.5. The figure indicates the rapid increase in the additional 
loss of pressure head as the particle position tends to the wall 
of channel. 

3.2 Elliptic Cylindrical Particle. Let us confine ourselves 
to the case of a particle lying at the centerline of the channel. 
The angle of attack is taken as 8 ( - 7r/2 < 6 < ir/2) between 
the x-axis and the major axis of the cross section; its positive 
value means counterclockwise rotation about the center of the 
particle (see Fig. 1). As in Section 3.1, we derive the solution 
for the particle in motion (case (/)) and for the stationary 
particle in Poiseuille flow (case (if)) and then superimpose the 
two solutions to determine the motion of the particle floating 
freely. 

(a) Aligned With the Flow Direction. To determine the 
effects of the shape of particle, we change the length of axes 
keeping the cross-sectional area constant; ab/d2 = 0.25. For 
convenience, we define the ratio of semiaxes length, r/, of x-
direction and ^-direction. Figures 8 and 9 show the depen
dence of the drag coefficient CD on t\ in cases (f) and (if), and 
the ratio of the translating velocity Up of the freely floating 
particle to the mean velocity U,„ of the suspending fluid, 
respectively. As is evident from Fig. 9, the particle can move 
faster when its major axis is parallel to the flow direction and 
the ratio of major to minor axis increases. 

(b) Lying at Nonzero Angle of Attack. The drag coef
ficient CD and the lift coefficient CL depend on the angle of 
attack 6. Figure 10 shows CD and CL versus 6 (0 < 6 < ir/2) 
for the two cases (i) and (it) when aid = 0.6 and bid = 0.417. 

If the migration velocity of the particle toward the wall is 
negligibly small in comparison with the translating velocity, 
the motion may be considered to be quasi-steady. Then, the 
condition "freely floating" is obtained by superimposing the 
foregoing two cases (i) and (if) and another case: (iv) the 
particle moving with a constant velocity Uq in the ^-direction 
in the fluid at rest, i.e., Uc = (0, Uq) and Us = (0, 0). Under 
this assumption, the motion of the particle floating freely is 
determined. Actually the migration velocity is under 1 percent 
of the translating velocity. In Fig. 11 is plotted the translating 
velocity of the particle. It is found that the particle with its 
major axis parallel to the flow direction travels fastest. 
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Fig. 8 Drag coefficient of an elliptic cylindrical particle ( A : case (0 in 
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Fig. 9 Translating velocity ratio of an elliptic cylindrical particle 

Fig. 10 Drag coefficient ( A : case (/) in negative sense and A : case (II) 
in positive sense) and lift coefficient (a: case (/) in positive sense and 
D : case (II) in negative sense) of an elliptic cylindrical particle 

4 Discussion 

The steady flow of a cylindrical particle in a channel has 
been calculated numerically using the finite element method. 
This method is very useful for treating complicated body 
shapes, though its application is almost confined to two-
dimensional or axisymmetric finite domain problems. In our 
numerical formulation, the primitive variables have been 
used, because they are more physical and have lower-order 
equations than other variables such as the stream functions. 
Tong and Fung [2] used the stream function in studying a 
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Fig. 11 Translating velocity ratio of an elliptic cylindrical particle 
floating freely 

rectangular cylindrical particle in the Poiseuille flow. The 
present results in Fig. 3 have a tendency similar to their 
results. 

The boundary condition (5) at the large distance from the 
particle has been applied at a finite distance 1 = 2.5c?. This is 
for the reason that a flow perturbation induced at a certain 
cross section of the channel reaches only a finite distance of 
the order of the channel half-width for low Reynolds number 
flow [13]. 

Our results obtained in the two-dimensional cases may 
contribute to a good understanding of capillary blood flow 
problems. First, let us apply our results to capillary 
hematocrit problem. It is known experimentally that when 
RBC's are made to flow through a small tube to a reservoir, 
their number density (Ht) in the tube is smaller than that (Hd) 
in the reservoir (Fahraeus effect). Especially, H,/Hd depends 
strongly on the tube diameter; it decreases monotonically with 
decreasing tube diameter to about 10 ^m and then increases 
with decreasing tube diameter to 2.7 fxm (inverse-Fahraeus 
effect). Furthermore, H,lHd depends on the radial 
distribution of RBC in the capillary tube [6]. This effect may 
be closely related to the difference in traveling velocity be
tween RBC's and suspending medium. If we consider the 
conservation law with respect to RBC's and medium, we have 
the ratio HJHd as 

Ht/Hd = \/(Hd + (\-Hd)VP/Vm), (9) 

where Vp and Vm are the mean velocity of RBC's and the 
medium, respectively. The preceding equation indicates that 
the ratio H,/Hd decreases with increasing velocity ratio 
Vp/Vm. Since our results are applicable to capillary blood 
flow at low hematocrit, it may be explained theoretically that 
the ratio H,/Hd depends on the capillary diameter and the 
radial position of the RBC. In fact, Fig. 3 shows that H,/Hd 

increases as the particle size parameter X becomes larger, i.e., 
the channel width becomes smaller. This consequence 
corresponds to the inverse-Fahraeus effect. It is also predicted 
from Fig. 5 that H,/Hd becomes larger as the particle flows 
nearer to the wall of channel. 

Next, let us examine the capillary flow resistance. When 
RBC's flow through microvessels, the pressure may be 
changed by the shear flow in the lubrication layer between the 
RBC and the wall. Thus the relationship between pressure and 
flow must be understood under the interaction of RBC 
motion with the vessel wall. The pressure change due to the 
RBC motion can be demonstrated well by examining the wall 
pressure distribution. It is clear from Fig. 6 that the maximum 
change in pressure occurs just up and down-stream of the 
narrowest gap between the particle and the wall. Moreover, 
the pressure distribution depends strongly on the particle 
position; the change in wall pressure becomes larger as the 
particle approaches the wall. Figure 7 shows that the flow 
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resistance increases as the distance between the particle and 
the wall decreases. 

In the present analysis, we have considered the motion of 
an elliptic particle experiencing no torque at the centerline of 
the channel. If the particle is placed off-center, it will ex
perience some torque as well as the drag and lift. Then, the 
elliptic particle floating freely will be either in a stationary 
motion with a definite angle of attack or in a flipping motion 
[15,16]. The transition between the two modes of motion may 
be affected by the deformability of the particle besides its 
position and shape. The stationary motion and the flipping 
motion of a deformable body in tube or channel are left for 
further study. 
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A P P E N D I X 

Finite Element Approximation 

Let us mention briefly the finite element method used in the 
present analysis. The domain considered, Q, is devided into 
352 triangular elements with 780 nodes; each element has six 
nodal points (three corner nodes and three side nodes). A 

Fig. A. A typical finite element grid used for an elliptic cylindrical 
particle. 

typical finite element grid used is shown in Fig. A. The shape 
of the particle is approximated by a polygon inscribed in its 
cross section. 

The velocity components are unknowns at the corner and 
the side nodes with quadratic interpolation functions (j>N 
(N=l-6) in the local coordinates. The pressure is an 
unknown only at the corner nodes with linear interpolation 
functions \j/N (N= 1 - 3). Then, the velocities and pressure 
within an element are represented by 

5 6 3 
u= 12 <t>NUN, v= £ <t>NvN, P= I ] TPNPN- (-4-1) 

N=\ N=\ N=l 

where uN, vN, and pN denote the nodal values of velocity 
components u, v, and pressure/?, respectively. 

Combining the nodal values and applying the variational 
principle to equation (6), we have a matrix equation: 

\A][X) = [0). (4-2) 
where the rth element of (X} is the value of global node i in 
the form: 

X, 

iPiJ 

(-4-3) 

The matrix A is the sum of all local element contributions; its 
submatrix a,y may be written as follows: 

~«1 «2 «3 

«„ = E «4 

«7 

«5 

as 

«6 

0 

(-4-4) 

and 
9 ^ N d<t>M <WN d<t>M 

dx dx dy dy 
}dS, 

«2 

«3 

fl4 

«5 

« 6 

djhs d<t>M 
dy dx 

d<j>N 

dS, 

-dS, 

+ 2-
dy dy 

as 

J Js M dx dy 

J J s I dx dx 
}dS, 
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where N and M represent the number of the local nodes in 
coincidence with the global node / and j , respectively, the 
summation is taken over the elements meeting at the global 
node /', and S is the area of the element. Equation 04-2) can be 
solved by Gaussian elimination method under boundary 
conditions (3)-(5). 

The stress tensor may be expressed in terms of the nodal 
values of velocities and pressure: 

du d(j>N 

ax w = i w=i ox 

/ du dv\ r-\ / d<j>N d<t>N \ 

>dy bxl ^T, \ by 

dv °4>h 
04-5) 

If (nx, riy) is the unit vector outward normal to the surface of 
the particle and (x0, y0) is the center of the particle, the drag 
force F acting on the particle and torque T about its center are 
calculated by: 

Fx = \-rnxdl, Fy = \T„ydl, 
04-6) 

T=\{{x-x0)T„y -(y-y0)T„x)dl, 

and 

Tnx Txxflx -r TXytly ,Tny TyXflx ' Tyyfly • 

In the foregoing, integration is carried out along the cir
cumference of the particle; a three-point Gauss rule is used in 
the numerical calculation. 

Let us refer to the error estimate of our finite element 

approximation. The accuracy of the finite element solution is 
affected by the number of elements and nodes, and the shape 
of elements. According to the theory of error estimates, the 
error in L2 norm of the first derivatives of u and p becomes 
0(h2), where h is the maximum dimension of the triangular 
elements [17, 18]. For the grid used in the present analysis, the 
dimension h is small near the particle but large away from it. 
It can be shown that in the region away from the particle, the 
flow field becomes almost quadratic and the pressure becomes 
almost linear. Consequently, the error will be small enough in 
the whole region considered. 

Concerning the effect of the shape of element, any angle of 
the triangular elements is required not to be large for a good 
approximation. As seen in Fig. A, our grid includes several 
elements of obtuse-angled triangle in some cases. This factor 
will influence the accuracy of finite element solution. 

Other factors of error lie in numerical integration of 04-6) 
and in the approximation of the particle shape. In fact, since 
integrands in 04-6) are not polynomials, integration can not 
be performed exactly. Moreover, we have approximated the 
particle shape by the polygon; this produces error in velocity 
components and pressure, especially near the particle, which 
affects the values of the drag, lift and torque acting on the 
particle. 

Since the numerical errors are produced by various factors, 
it is difficult to estimate them exactly. The simple method of 
estimation is to compare a numerical result with the 
theoretical result. In the present analysis, the difference 
between our numerical result and the theoretical result is 
within 1 percent for the drag force experienced by a circular 
cylindrical particle (X = 0.2, 5 = 0) (see Section 3.1). This 
suggests that our finite element approach may provide a 
satisfactory approximation for our study. 
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On the Role of a Compliant 
Surface in Long Squeeze Film 
Bearings 
The problem of compliant surface journal bearings with large slenderness ratio 
(length/diameter —-co) is analyzed for the case of small journal eccentricities. In 

R. H. BllCkholZ this model an elastic circular cylinder has an axial length that is large compared to 
Department of Mechanical Enqineerinq 'ts diameter. The elastic cylinder is rubber, the inner rubber surface is wetted with a 

Columbia University! Newtonian lubricant, and the outer rubber surface is bound to a rigid surface. 
New York, N.Y. 10027 Immersed within the lubricant is a rigid circular journal. The journal is held fixed, 

and a translatory motion is assigned to the rigidly backed elastomer bearing. The 
resulting squeeze film is analyzed for near concentricity between the undeformed 
rubber surface and the rigid journal. The development of the model proceeds from 
the basic Navier displacement equations for a solid and the Stokes equations for the 
fluid. The special case ofPoisson 's ratio going to 1/2 is used for the solid. The field 
equations are linear; a nonlinearity is a consequence of the boundary conditions. 
Discrete distributions of singularities are used to represent the coupled fluid and 
elastic deformation. Surface stress traction vectors are matched at the liquid-solid 
interface. Explicit expressions for changes of the fluid film gap due to rubber 
deformation, together with the associated change in fluid film pressure, are 
presented. 

I Introduction 

Virtually all pieces of rotating machines utilize either a 
rolling element, or fluid film journal bearings to stabilize and 
confine the motion of rotating rigid shafts (journals). In the 
present technology, these journal bearings consist of a rigid 
shaft rotating within a rigid housing, separated by a film of 
lubricant, typically an oil or a grease. The reliability of these 
bearings is normally very high. However, all such bearings 
suffer from wear of the components with use, and the wear 
problems are greatly accelerated by the presence of fine solid 
particles in the lubricant, excessive heat caused by low 
lubricant levels, and stresses normal to the bearing axis caused 
by eccentric or translational external loads on the shaft. 
Excessive sliding contact that occurs between the bearing and 
journal surfaces, "wiping," caused by severe dynamic 
loading or misalignment, is a further threat to bearing 
reliability. Recent studies have shown that when the rotating 
member within the bearing is coated with an elastomeric 
material, such as a rubber or plastic, the sensitivity of the 
bearing to each of the aforementioned conditions is much 
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reduced. This type of bearing, called a compliant surface 
bearing, is currently at the leading edge of lubrication science, 
and further study of their behavior is required to establish 
design criteria before full advantage can be taken of their 
potential. Because of the elastic nature of the bearing 
material, the performance of these bearings is substantially 
different from that of the now well-understood rigid wall 
bearing with incompressible lubricants. Compliant surface 
bearings have been treated theoretically by several authors, 
but these analyses were limited to numerical studies of 
rotating journals. 

The first study to assess the effect of compliant surface 
bearings was Fogg's [6]; he investigated water lubricated 
rubber bearings. In a later study, Benjamin [1, 2] analyzed 
compliant surface (i.e., rubber) journal bearings; he included 
both the fluid dynamics and coupled linearly elastic field 
equations. Reynolds' equation was used to calculate fluid film 
pressures and the Navier equation was used to calculate 
elastomer deformation. Owing to the complexity of the full 
equations, a computational approach was taken to solve the 
coupled field equations. Benjamin discussed his solutions and 
the particular computational difficulties associated with the 
numerical approach where the Poisson ratio goes to one-half. 
Hori [7] studied rubber-surface squeeze film bearings; a finite 
length rubber pad was oscillated perpendicular to a rigid 
surface. A variational principle scheme was used in his 
calculations to avoid difficulties associated with the Poisson's 
ratio near one-half in the numerical calculation of rubber 
deformations. At high frequencies he found that viscoelastic 
effects in the rubber cannot be ignored. Several related ex-
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Fig. 1 Sketch to show notation, length scales are not mutually con
sistent; S<| is the journal surface, S2 is the liquid-rubber interface, and 
S3 is the rigid-elastomer interface. Here the bearing is assigned a 
uniform translational velocity in the ey direction. 

perimental studies by Rightmire [11, 12] illustrate the 
usefulness of rubber-coated tilting and swing-pad bearings. 

It is known from many experimental results that synthetic 
rubbers are nearly incompressible materials. In linear 
elasticity theory the Poisson's ratio, v, is a measure of the 
compressibility for these elastomer materials. In attempting 
to carefully measure the compressibility of elastomers, 
Rightmire [10] devised an apparatus to determine Poisson's 
ratio. His study was confined to those rubber elastomer 
materials commonly used in bearings; and his results clearly 
demonstrated the nearly incompressible nature of various 
rubber compounds. For this reason I consider here an 
asymptotic theory for Poisson's ratio going to one-half, the 
incompressible limit. As might be expected the Navier 
elasticity equations have been investigated in this limit, 
Sokonikoff [13]. This incompressibility approximation has a 
rather distinctive feature; the Navier elasticity equations 
exhibit the same functional form as the low Reynolds number 
hydrodynamics equations, Stokes flow. 

Here a primary motivation is the effect of compliant 
surfaces on squeeze films in lubrication. Viscous forces are 
dominant when compared to inertia forces. Mathematical 
models based on lubrication theory follow from a geometrical 
shape approximation to the Stokes flow hydrodynamical 
equations. For lubrication, the fluid motion in a thin gap of 
slowly changing thickness is synthesized from a linear 
combination of Couette and Poiseuille flows. The pressure 
gradient is then adjusted to satisfy conservation of mass; the 
resulting equation for the fluid film pressure is Reynolds' 
equation. Models based on Reynolds' equation provide the 
basis to our understanding of fluid film lubrication. The 
Reynolds' equation is the more familiar method for 
calculating lubrication film properties; because of the interest 
in this fluids-solids problem, a Stokes' equation approach has 
been taken to simplify the coupled fluids solids problem. 

Current interest in low Reynolds number flows has led to a 
development of singularity superposition solution methods, 
Chwang [4]. A distinctive feature of these solution methods is 
the placement of singular solutions to Stokes' equation, and 
the adjustment of singularity strengths to satisfy boundary 
conditions. It is usually the case that singularity distributions 
are needed to satisfy the prescribed boundary conditions; such 
models usually result in integral equations for the strength of 
continuously distributed singular solutions. However, some 

exact solutions for simple geometries occasionally result from 
the distribution of a few discrete singularities. The latter 
approach is the one used here. The theory to be given is a 
mathematically simple one. 

How can relatively deformable bearing surfaces change 
fluid film bearing performance? In attempting to answer this 
question several investigators have studied the coupled fluids-
solid problem. While several theoretical models for various 
geometries have been proposed, little experimental data is 
available. 

II Analysis 

The development of this model proceeds in a manner aimed 
at understanding the effect of deformed bearing surfaces on 
fluid film pressure distribution as a function of prescribed 
dimensionless parameters. Here the asymptotic behavior for 
geometries of small eccentricities and for incompressible 
elastomers are studied. The geometry, governing equations, 
and boundary conditions are explicitly given in II-l. In 11-2 
the equations are solved subject to the given boundary 
conditions. In II-3 the amplitude functions for elastomer 
deformation are given. Limitations of these theoretically 
predicted elastomer deformation and fluid pressure field are 
discussed. 

II.l. Governing Equations. A Newtonian viscous fluid is 
contained in an annular gap that is bounded on the outside by 
a rubber layer of arbitrary uniform thickness, and this elastic 
rubber layer is bound to an inelastic solid at radius ft3. The 
notation and geometry used is shown in Fig. 1. The fluid 
motion and rubber deformation are given by an assigned 
translational velocity on the outer cylinder, U=U0 (t)ey. The 
associated translational displacement for this rubber bearing 
isD = (\'0U0(t')dt')ey. Accordingly, a fluid film pressure 
distribution is developed in the gap between the two surfaces 
S, and S2. The mathematical situation we wish to investigate 
is the fluid flow between S, and S2, the associated fluid film 
pressure, and the fluid-stress, traction-induced rubber 
deformation. Since the geometry is well suited to polar 
coordinates and the boundary condition is well suited to 
Cartesian, each will be used here as a matter of convenience. 
Fundamental equations describing the fluid velocity, U, fluid 
pressure, P, rubber displacement, W*, and rubber pressure, 
P, are given. 

(a) Elastomer Field Equations. The Navier equations 
for linear elasticity theory are applied to describe the rubber 
deformation, but the asymptotic form of the Navier equations 
for Poisson's ratio going to one-half are directly used. The 
strain tensor is defined as 

eu=(Wil+W;il)/2 (2.1) 
and the associated stress tensor for Poisson's ratio equal to 
one-half is 

T(,= -P6„ + 2llea (2.2) 

where n is a material property related to the linear modulus of 
elasticity, E, 

/*= ViE 
The constraining effect of rubber incompressibility accounts 
for the pressure type term in the stress tensor, equation (2.2); 
this is an important difference caused by taking Poisson's 
ratio equal to one-half. Conservation equations for mass and 
linear momentum are 

Wl,=0 (2.3) 
and 

0=-PII + IIWTJI (2-4) 

(b) Equations for Creeping Motion. The Navier-Stokes 
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equations are the governing equations for the fluid motion. 
They are simplified by virtue of the inertialess restriction; and 
the creeping flow equations, Stokes flow, for a Newtonian 
viscous fluid are directly used here. The rate-of-strain 
relationship is 

e^Wu + Uj,,)/! (2.5) 

and the stress tensor is 

fu=-P6u + 2peu (2.6) 

Conservation of mass and conservation of linear 
momentum equations for the fluid are 

[/,-,,= 0 (2.7) 
and 

0 = Pj + U,,Mii (2.8) 

Observe that equations describing the elastic deformation 
and the fluid motions are functionally the same; only the 
interpretation of the constants and dependent variables are 
different. In lubrication theory the analytical characterization 
for the pressure in the fluid film is usually given by Reynolds' 
equation. As mentioned, this coupled fluids-solid problem is 
mathematically simpler if the lubrication approximation is 
not used; Stokes equation is used directly to model the fluid 
motion. 

(c) Associated Boundary Conditions. These fluid and 
solid field equations are subject to boundary conditions. For 
the fluid the no slip boundary condition is given as, 

U = Uyty + Uzez =0 on S{ 

\] = \Jyey + Uzez = U0ey on S2 

where the location of the surface S2 is unknown. It is 
necessary to match the fluid and solid surface tractions on the 
interface S2. The surface stress traction vector t, on S2 is 
defined as 

I = fu"j 
where i\j is a unit normal to S2. 

The boundary conditions for the rubber layer bounded by 
S2 and S3 require zero deformation, W, on S3, and the surface 
stress traction vectors for the fluid and solid must match at 
the interface S2. Thus 

W = W * - ( ( U0(t')dt)ey=0 on S^ 

where W is the rubber deformation, and W* is the 
displacement. The surface stress traction vector for the solid is 
defined as 

where «,• is the unit normal to S2. Matching surface stress 
traction vectors on S2 requires that 

tj = tj on S2 

H.l Solution Method. Both the basic fluid and solid 
field equations to be solved are Stokes flow-type equations. 
While I am not concerned in this work with the development 
of the basic singularity solutions, these equations of motion 
are here solved by a singularity superposition method. An 
analysis of a similar kind was given by Chwang and Wu [4]; 
they formulated an integral equation approach for Stokeslet 
and doublet distributions to describe flows about bodies 
having a high degree of symmetry. Here, both the fluid flow 
and rubber deformation are investigated by a discrete 
distribution of singularity solutions to Stokes equation. To 
the lowest order this leads to an approximate solution for this 
coupled boundary value problem. The fundamental solution 
of Stokes equation for velocity, pressure, and vorticity is 
given below 

Us = aim ' + (a-x)x//-2 

P,=2/x(a.x)r~2 (2.9) 

w = 2(aAx)r"2 

\=yey+zez (2.9) 

where r2 = yz + z2 • This fluid motion corresponds to a point 
force located at the origin; the magnitude and direction of this 
force is 

F = 4-717*0! 

Here, a is a constant vector; and this singular solution is a 
Stokeslet. Three other useful solutions to Stokes equation are: 
the doublet 

/ 1 2y \ 

U2 = C2^-^-e,+ prerJ 
P2=0 (2.10) 

the Stokeson 

\]3 = C3(.3r2ey-2yrer) 

P3=C38lxy (2.11) 

and the uniform flow 

U4 = C4e^, 

P 4 = 0 (2.12) 

One of the difficulties in enforcing the no-slip boundary 
conditions at the location of the free surface S2, the liquid-
rubber interface is that its location is not known a priori. Its 
location is part of the solution. 

To establish the starting point for the analysis, I refer to the 
one-dimensional solution to Reynolds' equation for squeeze 
film flow between eccentric cylinders, Cameron [3], and to the 
exact solution to Stokes equation for concentric cylinder 
squeeze film flows, Chwang [4]. When the location of S2 is 
specified to be a circle with radius b2, and origin coinciding 
with the center of S^, then a simple exact solution to Stokes 
flow is known. The mathematical formulation here uses this 
exact solution, but b2 is treated as an unknown, slowly 
changing function of the azimuthal coordinate. 

This assumption that b2 is a slowly changing function of the 
azimuthal coordinate is made possible by considering here 
only the cases of near concentricity between the journal and 
the deformed rubber surface (i.e., a first-order approximation 
to the small eccentricity case). Limitations to the extension of 
exact concentric Stokes flow solutions to describe the fluid 
dynamics of nonconcentric geometries by allowing b2 to 
slowly change has been studied. The fluid pressure field 
predicted by Reynolds' lubrication equation is the same as the 
exact Stokes flow concentric solution when it is extended to 
the case of small journal eccentricities with rigid bearing 
surfaces. 

The following theoretical analysis describes the case of near 
concentricity between the journal and the undeformed rubber 
surface. The approximate solution for the fluid motion 
follows from a standard approximating procedure for ex
pressing the gap between surfaces S2 and Sj in an asymptotic 
power series using a "small constant parameter." 

This parameter, T, a deformation amplitude scaling, is 
introduced. The rubber deformation is assumed small relative 
to the undeformed gap thickness. A regular perturbation 
expansion for the deformed gap thickness is 

b2(fi)-bx=b2-b{+TWr(6) (2.13a) 

or 

b2(d) = b2 + TWr(d) (2.13ft) 

where 

WWr(d)\<<(b2-bi) (2.13c) 
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The preceding expansion for b2 is substituted into the exact 
solution for squeeze film lubricant flow in the annulus be
tween two concentric circular cylinders. It should be em
phasized that this approximation is correct provided the 
inequality, equation (2.13c), is valid. The fluid velocity field is 
now given by a superposition of a uniform flow, a Stokeson, a 
Stokeslet, and a doublet, 

V=C4ey-Ci(ln
bi/rey+yr~ler) 

+ C2(-eyr~2 +2yr~3er) -C3(,3r2ey-2yrer) (2.14) 

and 

Cl=U0a(\ + \2) = aU0C1 (2.14a) 

C2=
l-U0o(bj) = b2U0<jC2 (2.146) 

C 3 = - UQobx 2X2 = b[2C3aU0 (2.14c) 

C4=-U0ail+3\2)=U0(jCA (2.14c?) 

where 

ff-'=(l + X 2 ) / « i - ( l - X 2 ) 
A 

\=bi/b2(d), \=bl/b2 

The surface S2 is no longer a circle, since b2(d) changes with 
the azimuthal coordinate. It is a feature of this singularity 
superposition method that the force applied to the inner 
cylinder by the fluid is simply expressed as 

F=47r/iC,e / (2.15) 

The procedure used here allows C{ to slowly vary with 0; 
for this reason the force on the inner cylinder is here 
calculated directly from integration of the pressure 
distribution. Alternatively, a distribution of Stokeslets can be 
determined to satisfy the no-slip boundary condition; the total 
force that the body must apply to the fluid is then found by 
the sum of the Stokeslet distribution alone. 

In the limit of incompressibility the Navier equations for 
rubber deformation are identical in appearance to the Stokes 
flow equations. The rubber elastomer deformation is found 
using a discrete singularity superposition method. The 
solution technique employed uses four singularities: a 
uniform deformation, a Stokeson, a Stokeslet, and a doublet. 
The deformation is 

b2 W = C4ey - C, (/n — ey+yr~[ er) r * 

+ C2(-eyr~2 +2yr~3er) -C3(3r2ey-2yrer) (2.16) 

and the associated pressure is 

P=-2ij.Clyr2-&nCiy 

The four constants are determined from the stress traction 
balance on S2, and from the zero displacement boundary 
conditions on S3. Balance of stress tractions on S2 require that 

^-PSij + nWj+Wjj)]^ (2.17) 

where n, is the normal vector to S2. The normal and shear 
components of t are 

-P + 2jXerr=-P+2ij£rr at r = b2 (2.18) 

2jiere = 2lterl) at r = b2 (2.19) 

where 
err = dWr/dr, err = dUr/dr 

and 

_r d /We\ 1 d\Vr _ _rd (U,\ 1 dUr 

The following four expressions for the constants Clt C2, 
C3 , and C4 have been obtained from (2.18), equation (2.19), 
and the zero deformation condition on S3. 

p.{C!r-1+Cir-C2r^3) = ix(Clr-[+C3r-C2r'3), 

r = b2 (2.20) 

jX(C3r-C2r^) = ix(C3r-C2r-i), r = b2 (2.21) 

0 = C4-Cl(ln— +l)+C2r-2-C3r
2, r=b3 (2.22) 

and 

0 = C4-Clln — -C2r~2-C33 r2, r=b3 (2.23) 
r 

The preceding boundary conditions for the rubber are 
applied at the location of the undeformed interface; this is 
typical for linear elasticity theory. Solutions to the fluid flow 
problem require applying the no-slip boundary condition at 
the location of the deformed surface S2. Fluid pressure and 
flow are particularly sensitive to changes in gap size when S, 
and S2 are nearly equal. 

Solutions for these algebraic equations for C, are deter
mined. The local surface stress tractions for the fluid and the 
solid are balanced. Total force on the rubber layer is shown to 
be the same as the total force on inner rigid cylinder; this 
follows directly from the local stress balance at the interface. 
Recalling equation (2.15) the force on the inner cylinder is 

F = 47r/iCi ey 

and the force on the elastomer is 

F = A-KJXCX ey 

And from equations (2.19) and (2.20) 

Q = - <?! (2.24) 

thus 

F = F 

Utilizing equations (2.21) to (2.23), the slowly changing 
coefficients for rubber displacement in terms of the coef
ficients Cj, i= 1, 4 are found. These results are 

C2 = b2
lU0o(l + d4)-,\\-2C3-C2\

2+ ^ C , 5 2 l - (2.25) 
v. 2 J jj. 

C 3 =6 3 - 2 t / 0 c r [~C 1 -5 2 ( l + 5 4 ) - 1 [ x - 2 C 3 - C 2 X 2 

+ ^ C i 5 2 ] ) - (2.26) 

and 

C4 = Uoo^Ci (ln8+ l-\ +l(- C, -5 2 (1 +8 4 ) - 1 (2.27) 

Hence, the fluid film-induced deformation of the rubber is 
determined using equation (2.16); the rubber deformations 
are given in polar coordinates 

Deformations expressed in polar coordinates are convenient 
for determining the change in fluid film gap size; the radial 
component of displacement, Wr, is 

Wr=(C4-Cl+C2b2
2-Cib2

2)cos6 (2.28) 
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Equations (2.24)-(2.27) are now substituted into the 
foregoing equation for Wr\ the radial deformation Wr is then 
normalized by the radius b2. This normalized radial defor
mation is given in terms of the slowly changing functions C,, 
i = l , 4 ; 

-C2X2
7+C37X-2lcos0 (2.29) 

where 
_ (6 2 - l ) 2 

7 1+54 

and the C,-'s are defined in equations (2.14a)-(2.14c). 
It is necessary to substitute the expansion for b~2, equation 

(2.13), into the C,'s in equation (2.29). The result is an im
plicit algebraic equation for Wr. Calculation of Wr is sim
plified by the inequality (2.13); if this inequality is granted 
then it is advantageous to use an iterative method to ap
proximate Wr. To find a first approximation to Wr the C,'s in 
equation (2.29) are evaluated at b2, thus 

+ C3O7X-2lcos0 (2.30) 

where Cm, C20, and C30 are given in the following 

C10 = Cit \ = bi/b2+0(T) 

C20 = C2, \ = bx/b2+0(T) 

C30 = C,, \=bx/b2+Q(r) 

Equation (2.30) corresponds to the first-order, flow-
induced deformation; this is the deformation expected when 
no interaction between deformation of S2 and the fluid stress 
traction vector occurred. The slowly changing radius for S2 is 
approximated as a combination of deformation and trans
lation, thus 

b2(6)=b2(l+iVrt+—\ U0(t')dt'cosdj (2.31a) 

52(6) = b2(l + TiV(8l-h)cos6 

1 f 
+ — U0(t')dt'cos8) (2.316) 

b2 Jo 

where 

W(8,\l=[cl0(
1--^ln5+~y)-Cw\2y+CiQy\-2 

The small amplitude parameter, T, defined earlier, is 
jXaU0/ixb2. The change in fluid film gap thickness is given by 
equation (2.316), and the coefficients in W(8,X) are given by 
equations (2A4a)-(2A4d). This result shows that to a first 
approximation the rubber deformation alters the fluid film 
gap shape such that an apparent eccentricity is present. The 
corresponding change in the fluid film pressure distribution is 
determined by substituting equation (2.31), the location of the 
deformed surface S2, into the fluid pressure distribution 

P=-2jiClyr-2-$jXC3y (2.32) 
In light of the preceding result the journal load is calculated 
by integrating the pressure distribution on the journal surface. 
After substituting C, and C} into equation (2.32) the effect of 
gap change due to deformation is manifested in the following 
pressure distribution. 

P=-12££/o&j|/r3(0)cos0 (2.33) 
The fluid film gap thickness, h (0) is defined as 

h{0)=52(ff)-bl 

and 

The corresponding force F on the journal per unit axial 
length is 

1 2TT 

Pb^osOdd e7 

and upon substitution of the pressure, then integration, the 
result is 

6jJU0(t)b
2
2b{ TT 

b\e *(l + r)(l-f2) l / ' 

tfr-̂ -n -̂"1 eg)-]-, 
for 

- /TW(8,\) I f \ 

When comparing the preceding pressure distribution, 
equation (2.33), with the Reynolds' equation result for 
squeeze film pressures, one should keep in mind that (2.33) is 
only valid for small eccentricities. Representing the combined 
fluid-solid problem with a discrete singularity distribution 
limits this solution to small eccentricities. The principal 
advantage gained is the relative mathematical ease in in
corporating the effect of rubber boundary deformation into 
fluid film pressures. 

Il l Results 

This theoretical model predicts changes in fluid film gap 
size subject to the restriction of small-amplitude 
displacements. To illustrate the results, three points are 
discussed. First, the nondimensional radial deformation 
amplitude function is plotted and discussed; second, some 
typical numbers for bearing applications are substituted into 
the radial displacement amplitude solution to show that small-
amplitude deformations are realistic; and third, the rubber 
incompressible assumption is justified by estimating com
pressible displacement effects using actual Poisson ratios 
instead of the ideal incompressible value of one-half. 

7/7.1 Nondimensional Radial Deformation Amplitude 
Function. The theoretical result for radial deformation 
depends on the nondimensional parameters ap.U0/nb2, X and 
5, thus an amplitude function for radial elastomer 
displacement is determined. To show this deformation as a 
function of rubber thickness, I consider the following rescaled 
form of equation (2.30), 

W 
= ^f(X,5)cos0 (2.34) 

/A UQ\ 

\-,T2r 
In lubrication applications the parameter X is relatively fixed 
near one in order to maintain journal load carrying capacity; 
however, the relative thickness of the elastomer can change 
through the parameter 8. Figures 2(a) and 2(b) show the 
amplitude function Wr(8,\) for X = 0.995 and X = 0.975, 
respectively. 

Figure (2a) is a plot of the radial displacement amplitude, 
for X = 0.995, as a function of the normalized rubber 
thickness. It is also a measure of the apparent eccentricity 
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induced by the rubber deformation. In the limit as the rubber 
thickness goes to zero, 6—1, the associated rubber defor
mation will vanish; this is shown in Fig. 2(a). Clearly the 
effect of rubber thickness on radial deformation is nearly flat 
for 5 above 0.8, and elastomer deformation is best controlled 
using the parameter /icrC/0//x4>2 • The second curve, Fig. (2b), 
for X = 0.975, shows the radial displacement amplitude as a 
function of the normalized rubber thickness for a slightly 
different undeformed gap size. Note that X = 0.995 and 
X = 0.975 were chosen because of lubrication applications. 

The fluid-induced deformation given by equation (2.34) is 
discussed using the coordinates shown in Fig. 1. For a positive 
velocity U0 the fluid pressures in the gap wherey<0 are larger 
than fluid pressures in they>0 region; corresponding rubber 
deformation in the y<0 region causes an increased fluid gap 
thickness, and a decreased fluid gap thickness in the y>0 
region. Rubber elastomer exposed to the higher fluid pressure 
fluid is pushed toward the lower fluid pressure region. With 
this deformed shape a corresponding change in fluid pressure 
is given by the slowly changing constants C, = 1,4. 

7/7.2 Typical Deformed Gap Geometry. Using the foregoing 
radial deformation result, it is of interest to estimate actual 
gap size change due to fluid film surface tractions. The radial 
deformation is given in terms of the three parameters ajX/n 
U0/b2, X, and 5. As an example of radial deformation, the 
following physical constants were selected. 

t = 0.000 

PL = 820 dynes/cm2 

c=0.49984 

jii = 50cp 

62 =2.54 cm 

U0 = 10-2m/s 

b2-bi =0.013 cm 

6 3=3.18cm 

The deformed gap thickness is 

h(d) =(0.013 -O.OO48cos0)cm 

A further fluid gap thickness change occurs when one applies 
the translational component of motion to h{6); in the 
preceding example the fluid gap thickness does not change due 
to translation since t = 0. 

The typical parameter values chosen indicate that small 
eccentricities can occur during deformations. It is noted that 
rubber deformation increases with increasing fluid viscosity, 
increasing translating speed, and decreasing gap thickness. 
Furthermore, the radical deformation is enhanced with 
decreasing elastomer shear modulus and increasing rubber 
thickness. 

In this regard it is noted that more sophisticated singularity 
distributions are needed to generate the corresponding large 
amplitude journal eccentricities. 

777.3 Relative Importance of Compressible Defor
mation. Since the theoretical model developed predicts only 
incompressible deformations, a relative estimate of the 
compressible effects is made to verify this incompressible 
assumption. To estimate the importance of rubber com
pressibility, I will estimate the compressible displacements 
and compare them to the incompressible ones found herein. 
Recall that a change in the rubber volume can be estimated as 

3P0 / l - 2 ^ AV _ - 3 P 0 / l - 2 y \ 

~V~ 2u \ \ + v ) 2/x 

where AFis the volume change and Kis the original volume. 
For this two-dimensional problem the compressible defor
mation is estimated as 

15- 0 

NORMALIZED RUBBER THICKNESS, S 

Fig. 2(a) 

NORMALIZED RUBBER THICKNESS, S 

Fig. 2(b) 

Fig. 2 Plot of displacement amplitude function for (a) A = 0.995 and (b) 
X = 0.975; Wr(\,S) is shown as a function of the relative rubber 
thickness. 

AH 

~H~ 

-3P0 (\-2v 

2/* \ 1 + uJ 
(2.35) 

where the fluid pressure P0 is 

JP0=8/H/0ff6rI 

From equation (2.34) the incompressible displacement is 

W,.= '- — ffW(X,5)cosd (2.36) 
M b2 

Compressible deformation equation (2.36) is renormalized 
with the undeformed thickness of the rubber layer. 

* - / b2 \ P0 b2 
Wr=W\—-*- ) = -5 —±- Wr(\h)zo^ 

\b2 —o2/ n o3 - b2 

Finally the deformation ratio is 

compressible displacement 
R = 

and 

incompressible displacement 

R = (\-2v)(\-b)/bWr(\,b) 

A typical value for Poisson's ratio, Rightmire [10], is 
v = 0.499. The incompressible assumption seems to be a good 
one since 7̂  is much less than one. 
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IV Concluding Remarks Acknowledgments 
Fluid flow and rubber deformation for compliant bearings 

are modeled using a singularity superposition method. The 
principal advantage of this approach is the relatively simple 
theoretical estimates for compliant bearing deformation. This 
approach also reduces the calculation of rubber deformation 
to determining three parameters, jxoU0/ixb2, 5, and X. One 
limitation of this simple model is that eccentricities between 
the deformed elastomer and inner cylinder are asymptotically 
small. It is found that rubber deformation under fluid film 
pressures is equivalent to an apparent eccentricity between the 
inner cylinder and the bearing surface. Another feature 
predicted by the model is the occurrence of higher order 
harmonics in the rubber deformation, such deformation 
depends primarily on the change in pressure profiles induced 
by gap changes. Given typical values for oil lubricant 
viscosities and rubber sheet modules, it is found that rubber 
deformation consistent with the small departures from 
concentricity are possible. It is noted that estimates of rubber 
deformation due to Poisson's ratio near one-half show the 
incompressibility assumption for rubber to be successful. 

I have examined here only the simplest of squeeze film 
bearing flows. That is steady, Newtonian fluid with uniform 
properties, and no cavitation. Thus, the conclusions on the 
validity are limited by these assumptions. However, the 
method presented here is suitable for treating more complex 
geometries using more elaborate singularity distributions. 

It is hoped that the present work will lay the groundwork 
for further modeling improvements for compliant surface 
bearings. As a first step in this direction a generalization of 
this long bearing theory to arbitrary eccentricities might be 
considered. Here the singularity solution method can be used 
by considering distribution in place of discrete singularities. 
The further improvement would be of practical value. 

This work was supported by National Science Foundation 
Grant No. MEA-81-06447. 
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Oscillations of a Self-Excited, 
Nonlinear System 
A system of self-excited, nonlinear differential equations exhibiting frequency 
entrainment is studied. Although similar equations describe electrical oscillators 
and machine-tool chattering, the results presented herein apply specifically to a 
model for the vortex-induced oscillation of linear structures. The equations are 
treated analytically by an approximate method, and two cases — partial nonlinear 
coupling and full nonlinear coupling — are identified. As applied to vortex-induced 
oscillations, the partially coupled case describes a structure having a single mode of 
oscillations, while the fully coupled case approximates continuous systems, such as 
undersea cables. Solutions for each case are examined for stability, and the results 
reveal several new types of behavior. 

1 Introduction 

A wide variety of physical systems may be classified as self-
excited oscillators since they exhibit continuous, well-defined 
periodic oscillation without any "external" periodic ex
citation. Examples include many musical instruments, certain 
electrical circuits, machine-tool chattering, and the vortex-
induced oscillations of structural components. Often, the self-
excited oscillator is coupled to other oscillatory elements that 
possess their own distinct natural frequencies. In such a 
system, the frequency of the self-excited oscillator may be 
captured by the system resonance, a phenomenon called 
entrainment, or lock-in. The vortex-induced oscillation of 
elastic structural elements is an important example of this 
phenomenon. 

There have been a number of experimental and analytical 
studies of self-excited systems, most relating to the problem of 
vortex-induced oscillation [1-8]. Analytically, it has become 
customary [4] to model the system by a single-mode, damped 
linear oscillator coupled to a self-excited oscillator of the van-
der-Pol type [8]. By appropriate selection of model 
parameters, this approach has produced results that agree 
reasonably well with experimental observations, provided that 
the natural frequencies of the system are well separated. 
However, when the natural frequencies of the system are 
closely spaced, as in certain large marine systems, the 
customary, single-mode analysis is no longer valid. In such a 
case, distinct lock-in may or may not occur depending on the 
system parameters [3]. 

To gain further insight into the behavior of self-excited 
systems with closely spaced natural frequencies, a two-mode 

Contributed by the Applied Mechanics Division and presented at the Winter 
Annual Meeting, New Orleans, La., December 9-14, 1984 of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted, until two months after final publication of the 
paper itself in the JOURNAL OF APPLIED MECHANICS. Manuscript received by 
ASME Applied Mechanics Division, February, 1983; final revision, December, 
1983. Paper No. 84-WA/APM-24. 

Copies will be available until August, 1985. 

system is considered herein. It may be shown [3] that an 
important class of physical systems of this type may be 
modeled mathematically by a set of two damped linear 
oscillators coupled to two van-der-Pol oscillators. Such is the 
problem addressed in this paper. An approximate analysis 
reveals several new types of response behavior. 

2 Formulation 

Consider a linear two-mode system with natural frequencies 
0, and fi2 both close to unity. Let these two modes be coupled 
to two self-excited, van-der-Pol-type oscillators with unit 
frequency. Consistent with physical arguments for the vortex-
shedding problem [1, 3], it will be assumed that the self-
excited oscillators are coupled in a nonlinear fashion through 
the velocity-dependent terms. The coupling between the self-
excited oscillators and the linear oscillators will be assumed to 
be linear in velocity and displacement terms. The coupling 
assumed is the simplest form possible that retains the basic 
physics of the problem. 

Under the foregoing assumptions, the equations governing 
the response will be 

xx +axX\ + 0 ] * ! 

X2+a2X2+Q2
2X2 

x3 + (px\ + qx\ - b) x3 +x} 

x4 + (px\ + qx\ - b)x4 +xA 

= ax3 + fiXj 

= ax4 + &x4 

= yxx + bxx 

= yx2 + 8x2, 

(la) 

(lb) 

(lc) 

(Id) 

where dots denote differentiation with respect to time t. 
Equations (la) and (lb) describe the modal characteristics of 
the system, while equations (lc) and (Id) specify the self-
excited components associated with these modes. For the 
problem of vortex-induced oscillation of a cable, equations 
(la) and (lb) would represent the response of two adjacent 
modes of the cable, while equations (lc) and (Id) would 
represent the influence of the shed vortices coupled to the two 
modes. It will be assumed that all coefficients are of order 
e (e < < 1), with the exception of U^ and fl2> which are 
assumed to differ from unity by quantities of order e. The 
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nonlinearity, damping, and coupling are therefore assumed to 
be small. 

Without loss of generality, equations (1) may be written in 
vector form as 

+ (iy + 5)Hm_2=0, m = 3,4- (9) 

These equations are satisfied by the following solution form 
for the complex amplitudes Hm 

x + x = ef(x,x) (2) Hm{T) = ^Am{T)efn,i-nt m=\, . . . ,4. (10) 

where x = (x ,xA) and the definition of f (x, x) follows 
directly. An approximate analysis of this system of equations 
may be carried out using a variation of the method of multiple 
time scales [6]. To this end, let the solution x be expanded as a 
power series in e, 

x = x<°>(/,7) + ex<1>(?,r), (3) 

truncated here to two terms, each of which depends on time t 
as well as the "slow time" et, denoted hereafter as T. Then, 
defining D0 and Dx as the partial derivatives with respect to / 
and T, respectively, substituting equation (3) into equation 
(2), and equating coefficients of like powers of e gives the 
following two equations for x(0) and x(1): 

e°: £>;Sx<0>+x<0> = 0 

e1: e(A)X ( 1 )+x ( 1 )) = -2eZ>0Z>,x<0>+ ef(x«",A)X(0)). (4) 

Denoting complex conjugation by overscoring, the e° 
equation is satisfied by 

xffl=Hm (T)e"+H„, ( D « - " , m = 1, . . . A (5) 

where H,„(T) is a slowly varying complex function. Con
sequently, the e1 equation becomes 

e{Dlx^ +x®)=- li (e 
dH„, dHm 

dT dT 

+ e/„,(x<0>,JD0x<0>). 

- ) 

(6) 

To proceed further, the functions e/,„ in the system (2) must 
be specified. First-order differential equations for the Hm are 
then generated by substituting equation (5) into equation (6), 
and requiring that the sum of the secular terms in equation (6) 
vanish. 

Writing the functions efm appropriate to equations (1) 
yields 

e(D2x^ +*£>) = ( [ / m - 2 * e ^ y + c . c , m=\,2 

e(23§41,)+4!)) 

= Wme3i' + (v,„-2ie^^ei' +c.c, m = 3,4 

(7) 

where "c .c . " denotes the complex conjugate of all preceding 
terms, and 

Um = (l-a2
m-iam)Hm + Va + P)Hm+2, m=l,2 

Vm = (iy + d)Hm_2+ibHm-3ipHjnHm-2iqHmH„H„ 

~iqHmHt„ m = 3,4 (8) 

Wm = iHm(qH2
n+pH%), m = 3A. 

In the latter equations, and henceforth, n = 4 when m = 3, 
and n = 3 when m = 4. 

The requirement that secular terms vanish on the right side 
of equations (7) gives 

By substituting equation (10) into equation (5), the unknown 
real quantities A„, (T) and 6m(T) may be identified, 
respectively, as slowly varying amplitudes and phases: 

xffl=A„ cos (t + 6m), m = l, . . . ,4. (11) 

Substituting equations (10) and (11) into equations (9), and 
separating real and imaginary parts gives, upon 
rearrangement, the following set of eight, first-order, 
nonlinear differential equations in the amplitudes and phases: 

Am = - -amAm+~Am + 2(a cos iin-p sin n„,), m = l,2 

1 A 
K = - , ( l - f i » , ) - - ^ 7 J ; i ( / 3 c o s /x,„ + a s in /x,„), w = l,2 

1 3 1 
Am = - bAm--pAl-~qA2

nAm(2 +cos 24>) 

+ 2 ^ - 2 ( 7 cos M,„_2 + 5sin^,„_2) , m = 3,4 

(—1)'" A 
6m = —-—qA 2

n sm 2 0 - m~2 (5 cos /*ffl_2 
S 2Am 

-Ys in^„ ,_ 2 ) , m = 3,4 (12) 

where the phases differences fix, ix2»
 anc> 4> are defined as 

m-fli-»3, ^ ^ ^ 2 - 0 4 . ^e4-d3. (13) 

3 Steady-State, Monofrequency Solutions 

For steady-state, monofrequency oscillations at some 
unknown frequency co, assumed to differ from unity by a 
quantity of order e, the amplitudes Am in equations (12) must 
be constant, while the phases 0,„ must drift at the same, slow, 
constant rate co—1. Thus, approximate, steady-state, 
monofrequency oscillations of the system (1) are described by 

-amAm+Am+2(a cos /*„,-/? sin /*„,) =0, w = l , 2 

(2o3-\-ttl,)Am+Am+2(Pcos ^ , „+as in ix,„) = Q, m = \,2 

bA, 

-In 
dH„, 

dT 

dH„, 

+ (1 -Q% -iam)H„ + (ia + (3)Hm+2 =0 , m = l,2 

-2ie-£ + ibH,„ -3ipH%Hm -2iqHmH„H„ -iqH.M 

3 1 
-pA3

m--gA2
nAm(2+ cos 20) 

+ ^W,-2(YCOS /^„,_2 + Ssin /tm_2) = 0, m = 3A 

( -1) ' " 
2(a>-l)Am — q A \ A m sin 20 

+A,„_2(5 cos nm_2-y sin /*m_2) = 0, m = 3A 

(14) 

This system comprises eight, nonlinear algebraic equations 
for the eight unknowns (Au . . . , A4, /ilt /x2, 0, co). The 
method of solution depends strongly on whether the coupling 
parameter q is zero or nonzero. 

3.1 Partially Coupled Oscillations (q = 0). It is apparent 
from equations (1) that if q = 0, the pair of oscillators (Xi, x3) 
is uncoupled from the pair {x2, xA). Consequently the system 
of eight equations (14) resolves into two identical, uncoupled 
sets of four equations. For specificity, consider the set in
volving xt and x3. The first pair of equations (14) may then be 
solved for cos /X] and sin ^ . Squaring and adding gives an 
expression for Ai/AJ. Substituting these results into the 
second pair of equations (14) produces a frequency equation 
and an amplitude equation of the form 
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F » = 0 , j = \ 

G,(co) = Aj+1, j = 1, 

where the functions Fj and G/ are defined as 

(15) 

(16) 

P , * 4 U l * ^ (2C0-1-Ql ) + M y ] n T ) 
F>^3^l2(1-w)--(2l7-l-fil)2

+«) i (17) 

w£K -A:g(2faj-l-f l j)+My 
( 2 w - l - f i ? ) 2 + a ) ) 

and 

(18) 

(19) ka=a5 + l3y, kb^ay-p5. 

The form of the solution to equations (15) and (16) may be 
simplified by replacing the pair of frequency variables (co, fii) 
appearing in equations (17) and (18) with "frequency 
detuning" variables D and d, defined as 

1 
D = - ( 2 a > - l - 0 2 ) = co-0, 

d - - ( 1 - 0 ? ) « 1 - Q , . (20) 

where the indicated approximations hold to order e. D is the 
detuning between the response frequency u and the natural 
frequency of the oscillator xx, while d is the detuning between 
the natural frequencies of the two oscillators x3 and x{. 
Substituting into equation (15) yields 

d=D + 
1 C2kbD+kaan 

I 42?2+a? r 
(21) 

For each value of D, the amplitude A3 is given by equation 
(16). The boundaries of real amplitude may be found by 
setting G1(ui) = 0. 

To investigate stability of the preceding solutions, it is 
necessary to return to equations (12), prior to assumption of 
the steady state. Using these equations together with 
equations (13), expressions for A j , A3, and jx{ may be written 
in the form 

X = J(X), (22) 

where X = (Ait A3, jii). The steady-state solution X0 

satisfies J(X0) = O, so if X is perturbed slightly away from 
X0, the perturbation X satisfies, to first order, 

x r a j - i 
x=[ax] 

X. (23) 

The eigenvalues of the Jacobian matrix are found to satisfy a 
cubic equation whose coefficients are polynomial functions of 
the independent variable D. The Routh conditions may then 
be applied to determine which solutions are stable. 

3.2 Fully Coupled Oscillations (q*0). When g^O, all 
four oscillators xm in equations (1) are coupled together. 
Upon inspection of these equations, it is clear that two en
tirely different brands of nontrivial solution are possible: 

Case 1: Nondegenerate solutions, for which all four x,„ 
are nonzero. 

Case 2: Degenerate solutions, which are of two types: 

x, , x 3 ^ 0 and x2=xA=0 (Type 1) 

x2,x4^0 and x,=xi=0 (Type2) (24) 

For any given set of parameters (a, /3, 7, 5, p, q, etc.) it is not 
clear a priori which type of steady-state solution (if any) will 
prevail. 

Case 1: Nondegenerate solutions. Consider first the 
nondegenerate case. Initially, solution of the eight steady-
state equations (14) in the eight unknowns (Ax, . . . , A4, nlt 

H2, <t>< ") proceeds in direct analogy to the solution of the 
partially coupled system, yielding the amplitude equation (16) 

- . 2 5 - . 2 - . 1 5 - . 1 - . 0 5 0. .05 .1 .15 .2 .25 

d 
Fig. 1 Partially coupled oscillations: typical frequency response 
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Fig. 2 Partially coupled osci l la t ions: ampli tude response 
corresponding to Fig. 1 

1.3D -0.15 -0.30 -0.15 >.]5 0.30 

Fig. 3 Fully coupled oscillations: typical nondegenerate solutions (A 
= 0.1) 

for,/ = 1 , 2 . Further elimination gives, in place of equation 
(15), 

(*? - H ) 2 + [(Fi G, + F2G2) - f - (F, G2 + F2G,)] ' 

= ( ^ ) 2 ( F 1 G 2 + F 2 G , ) 2 (25) 
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where Fj and Gy are defined fory = 1,2 by equations (17) and 
(18). 

As in the foregoing, detuning variables may be introduced 
here to recast the frequency equation in simpler form. Let 

1 
Q? + fii 

2 1. 2 

1 r Qj + Qf-j 

} - . 
Q, +fl, 

A=-(n | -Q?)«Q 2 - f i , 

(26) 

(27) 

(28) 

The quantities 5 and d, based on the mean of Q{ and fi2, are 
directly analogous to D and d, introduced earlier for the 
partially coupled case. The additional variable A is necessary 
here to measure the difference between 02 and Q[. Writing 
equation (25) in terms of the detuning variables gives 

K2d
2+Kld+K0=0, (29) 

where K2, Ku and K0 are algebraic functions of the system 
parameters and the independent variable D. Hence, for each 
value of D there are two possible solutions d, which are either 
both real or both nonreal, depending on the sign of the 
discriminant. For each real frequency solution d, the am
plitudes and phases (Ax, . . . , A4, nu fx2, 4>) may be 
recovered by back substitution. The amplitude solution is real 
if and only if both functions Gj are positive. 

As for the case of partially coupled oscillations, if a 
solution is real, stability may then be investigated using 
equations (12), which yield a set of seven first-order dif
ferential equations in the four amplitudes and three phase 
differences. Unlike the previous case, the seven-by-seven 
Jacobian of the present case is too large to permit a con
venient, analytical determination of stability conditions. The 
stability results given in Section 4 were obtained by analytical 
differentiation to obtain the Jacobian matrix, followed by 
numerical determination of the eigenvalues. 

Case 2: Degenerate Solutions. As specified by equations 
(24), there are two types of degenerate solutions. However, 
since the two types are completely analogous to each other, 
only one of them need be considered explicitly. Considering 
Type-1 solutions, the steady-state equations reduce, for the 
nondegenerating degrees of freedom (x,, x3), to equations 
(14). The same equations reduce, for the degenerating degrees 
of freedom (x2, x4), to the identity 0 = 0, since A2 = AA = 0. 
Therefore, steady-state degenerate solutions are identical to 
those for the partially coupled case. 

It remains to investigate the stability of these solutions. The 
stability analysis is quite different from the partially coupled 
case-even though the steady-state solutions are identical-
because, in the fully coupled context, arbitrary perturbations 
about the steady-state may include nonzero perturbed values 
of the degenerating degrees of freedom. Thus the full system 
of eight equations (12), involving all four amplitudes 
(Ajt . . . , A4) and three phase differences 0^, /x2, 0) must be 
considered. 

However, a problem arises: since the steady-state am
plitudes of the degenerating degrees of freedom are zero, it is 
meaningless to speak of the corresponding phases. Hence, for 
Type-1 solutions, the steady-state values of the phase dif
ferences n2 and <t> are not well defined. Consequently, a 
stability analysis based on equations (12), which require well-
defined A's, (it's, and </>, must be abandoned in the degenerate 
case. 

An alternative stability method is to perturb the original 
differential equations (1) about the exact, degenerate steady-
state. In such an approach, the concept of phases for the 
degenerating degrees of freedom is absent, so the problem 
discussed in the foregoing does not arise. Retaining terms to 

15 P. 30 

Fig. 4 Fully coupled oscillations: typical degenerate solutions (A 
0.1) 

first order in e yields two pairs of perturbational equations 
which are completely uncoupled from each other, one pair for 
the nondegenerating degrees of freedom, and another pair for 
the degenerating degrees of freedom. The degenerate, steady-
state solution to equations (1) will be stable if and only if the 
solutions to both pairs of perturbational equations decay with 
time. For the nondegenerating degrees of freedom, the 
stability characteristics may be determined as for the partially 
coupled case. Thus, independent of the difference between flj 
and Q2, (as measured by the parameter A), solutions that are 
unstable in the partially coupled case are also unstable in the 
fully coupled case. 

Additional stability bounds are imposed on the fully 
coupled solution by the degenerating degrees of freedom, the 
stability characteristics of which cannot be inferred from 
previous work. However, if the exact parametric excitation is 
replaced by the approximate value given by the asymptotic 
method, the stability characteristics may be deduced using 
Floquet theory. In the present investigation, a set of principle 
solutions, which depend on the parameter A, is determined by 
numerical integration. Next, the associated, one-period 
transfer matrix and its eigenvalues are found numerically. 
According to Floquet theory, the system will be stable if and 
only if all eigenvalues have complex moduli less than unity. 
As a result of these additional stability conditions, solutions 
that are stable in the partially coupled case are not necessarily 
stable in the fully coupled case. Moreover, these additional 
conditions cause the stability of degenerate solutions to 
depend on the difference between Qj and Q2. 

4 Numerical Example 

The results presented in the following were obtained using 
the following values of the parameters in equations (1): 
a = 0.000988, 0 = 0.00104, 7 = 0.740, 5=1.156, 
a, =a2 =0.00613, 6 = 0.126. In addition, for the case of 
partially coupled oscillations, p = 0.270 and q = 0, while for 
the case of fully coupled oscillations,/? = 0.405 and q = 0.810. 
These values, appropriate to the vortex-induced oscillation of 
spring-supported cylinders and elastic cables in air, were 
obtained by fitting a simplified mathematical model of vortex 
shedding [3] to experimental data on harmonically forced, 
rigid cylinders [5] as well as spring-supported cylinders [2]. 
According to this model, spring-supported cylinders are 
described by partially coupled oscillations of equations (1), 
while elastic cables are approximated by fully coupled 
oscillations. Although the parameter values stated in the 
foregoing are not all strictly in accordance with the order e 
approximations implied by equation (2), it will be shown in 
the following that accurate results are nevertheless obtained. 
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4.1 Partially Coupled Oscillations. The results for the
partially coupled case are shown in Figs. 1 and 2. Portions of
the frequency response curve d(D) which generate imaginary
amplitudes (A 3, A I) are shown as short-dashed lines.
Solutions that are real but unstable are shown as long-dashed
lines, while solutions that are real and stable - the only ones
of physical interest - are shown as solid lines.

Figure 1 illustrates that when the natural frequency (0 1) of
the linear oscillator XI is sufficiently greater than the natural
frequency (unity) of the self-excited oscillator X3 (d <0), the
response frequency w closely approaches that of the self
excited oscillator (D "" d). However, when 0 1 is only slightly
less than unity (0<d<0.16), the self-excited oscillator is
entrained by the resonance of the linear oscillator, and the
response frequency approaches 0 1 (D "" 0). This is "lock-in."
For sufficiently small values of 0 1 (d>0.16), the response
again approaches the frequency of the self-excited oscillator
(D""d). The transition from one type of response to the other
occurs abruptly, and is characterized by hysteretic jumps
(CDD' C' in the figure). The precise point of transition
depends on whether the detuning is being increased or
decreased.

As indicated in Fig. 2, the amplitude response shows a
definite peak for detuning d between 0 and 0.16,
corresponding to the region of lock-in. Amplitude jumps are
also present, corresponding to the frequency jumps of Fig. 1.

In the case of vo~tex-inducedoscillation, the frequency of
the self-excited oscillator - and hence d - is proportional to

1500

-- A2 =0

1000500a

1
L---_------.-L.-__~="""-J

g.-------,-------,------------,

1
J

~L- L- -'----- ------'

the fluid-flow velocity. The general trends of Figs. 1 and 2
agree with the observed, vortex-induced oscillations of single
mode structures. To illustrate this point, data from the
aforementioned experimental study [2] of spring-supported
cylinders in air have been plotted on the figures. Although the
experimental results shown here do not display the hysteretic
jumps predicted by the model, other runs from the same
experiment (at lower values of the damping constant GI) do
display such hysteresis, a phenomenon that has not been
simulated by previous nonlinear models of vortex-induced
oscillation.

4.2 Fully Coupled Oscillations. The results for a
coupled two-mode system with .:l = 0.1 are shown in Figs. 3
and 4. Figure 3 shows the nature of the nondegenerate
solution and Fig. 4 that of the degenerate solution. Solid lines
denote real, stable solutions, long-dashed lines denote real,
unstable solutions, and short-dashed lines denote frequency
solutions that generate nonreal amplitudes. In Figure 3, the
"plus" and "minus" frequency solutions - which correspond
to the two solutions of the quadratic equation (29) - are
plotted separately for clarity. However, for the parameters
under consideration, the "plus" solution is never real and
stable, so the corresponding amplitude plots are omitted. For
the set of parameters under consideration, nondegenerate
solutions do not exhibit lock-in to any great degree. For other
sets of parameters, nondegenerate, locked-in solutions have
been found, which are real and stable, but such solutions do
not appear to have physical meaning. At point B, the upper
mode amplitudes vanish, so this point must represent the
boundary between nondegenerate solutions and degenerate
solutions of Type 1.

From Fig. 4 it is observed that real, stable solutions for the
degenerate case occur only in the locked-in segments B' G and
D'H. These lock-in bands are suppressed as the modal

Fig. 7 Numerical solution versus analytic prediction for test point T1
ofFig.6
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Fig. 10 Numerical solution for test point T4 of Fig. 6 
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frequency separation A decreases; the presence of the upper 
mode causes instability of the right end of the lower-mode 
lock-in band, while the presence of the lower mode causes 
instability of the left end of the upper-mode lock-in band. 

By piecing together the real, stable solutions from Figs. 3 
and 4, the composite frequency solution shown in Fig. 5 is 
obtained. A similar composite could be constructed for the 
response amplitude, if desired. Nondegenerate and degenerate 
solutions "fit together" at the points B — B', and ideally, 
these two points should coincide. The slight mismatch is 
attributable to the fact that the stability analysis used to 
obtain point B is entirely different from that used to obtain 
point B', as discussed in Section 3. 

The nature of the composite solution will depend greatly on 
the value of the intermodal coupling parameter A. Figure 6 is 
a map of the composite solutions obtained by computing the 
various solution boundaries for a number of values of A. 
Thus, the lettered points at A = 0.10 correspond to those of 
Fig. 5. Nondegenerate solutions exist in the three shaded 
regions while degenerate solutions exist in the hatched 
regions. The narrow white gaps between the B — B' and 
D—D' boundaries are artificial, as indicated in the preceding 
paragraph. On the other hand, the large white area is genuine. 
In this region, the differential equations fail to admit simple 
harmonic solutions of any sort, as discussed earlier. 
Overlapping regions indicate hysteretic behavior. In par
ticular, lock-in overlap occurs in the region where Type-1 and 
Type-2 degenerate solutions coexist. 

The phenomenon of lock-in suppression - the inhibition of 
degenerate solutions as A—0-is clearly displayed by the 
solution map, particularly for the upper mode. Lock-in 
suppression has two effects. First, it reduces the extent of 
lock-in overlap, and second, it gives rise to the region of 
complex solutions (the white region of the figure). Decom
position of the two-mode problem into two one-mode 
problems at large values of A is clearly indicated by the 
solution map. The shaded, triangular wedge of nondegenerate 
solutions near the center of the map represents the "dead" 
area between modes where both modal response amplitudes 
are relatively small. Thus, the two modes may be considered 
well separated if A is sufficiently large that this wedge 
separates the two types of degenerate solution. 

The approximate analysis may be verified by numerical 
integration of the equations (1). Results for four com

binations of A and d are shown in Figs. 7-10. These test 
points, denoted by Tt-T4 on Fig. 6, are selected to represent 
the four types of solutions predicted analytically by the 
solution map. On Figs. 7-9, the steady-state amplitudes 
predicted by the asymptotic method are shown at the right of 
each plot. Clearly, the analytical predictions are quite good-
qualitatively, each solution is of the type predicted, and 
quantitatively, the amplitude predictions are accurate. As 
predicted by the steady-state stability analysis, the solution 
shown in Fig. 10 for point T4 is not simple harmonic. 
Although the steady-state equations yield no further in
formation for such a case, the asymptotic method itself does 
yield such information. The equations for the amplitudes and 
phases, equations (12), may be integrated numerically with 
small initial conditions, yielding the results shown in Fig. 11. 
A comparison of Fig. 11 and Fig. 10 indicates that the 
asymptotic method does an acceptable job in predicting the 
envelope of the response, even when the solution is not steady 
state. 
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Dynamics of Constrained 
Multibody Systems 
A new automated procedure for obtaining and solving the governing equations of 
motion of constrained multibody systems is presented. The procedure is applicable 
when the constraints are either (a) geometrical (for example, "closed-loops") or 
(b) /cinematical (for example, specified motion). The procedure is based on a 
"zero eigenvalues theorem," which provides an "orthogonal complement" array 
which in turn is used to contract the dynamical equations. This contraction, 
together with the constraint equations, forms a consistent set of governing 
equations. An advantage of this formulation is that constraining forces are 
automatically eliminated from the analysis. The method is applied with Kane's 
equations —an especially convenient set of dynamical equations for multibody 
systems. Examples of a constrained hanging chain and a chain whose end has a 
prescribed motion are presented. Applications in robotics, cable dynamics, and 
biomechanics are suggested. 

Introduction 
During the past five years there has been increasing interest 

in formulations of the equations of motion of large multibody 
systems. Interest has arisen almost simultaneously in three 
areas: robotics, biomechanics, and space vehicle dynamics. In 
each area, analysts have been seeking efficient automated 
procedures for obtaining and solving the governing equations 
of motion. 

This interest in multibody systems stems from two sources: 
first, many structural systems (for example, robots, chains, 
manipulators, and biodynamic models) can be modeled by 
multibody systems; and second, it has just recently been 
possible, with advances in computational methods, to obtain 
efficient numerical formulations and solutions of the 
governing dynamical equations. 

Recently attention has focused on constrained multibody 
systems - that is - systems possessing closed loops or systems 
with specified motion. These systems are useful in modeling 
robot arms, closed mechanisms, docking manipulators of 
spacecraft, ship cranes, restrained human body models, and 
cables anchored at both ends. This paper presents a form
ulation of the governing equations of such systems. 

Governing Equations. References [1-19] represent a 
partial list of recently reported research efforts on multibody 
systems. For open-chain and disjoint rigid systems, the 
governing equations of motion can be written in the form: 

aijXj=fi 0 ,7=1, . • • ,n) (1) 
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where the Xj represent the generalized coordinates of the 
system; the ay are functions of the Xj and the inertia 
properties of the system; the/, are functions of the xJt their 
time derivatives Xj, and the applied forces on the system; n is 
the number of degrees of freedom of the system; and the 
repeated index j represents a sum over that index. 

Constraint Equations. If there are constraints on the 
system (occurring, for example, with closed loops or with 
specified motion), there occur an additional set of equations 
of the form: 

bijXj=gi 0 = 1 m;j=l, . . . , « ) (2) 
where the by are functions of the Xj, the g, are functions of 
time, and where m <n. There are thus m + n equations for the 
n Xj. However, since there are m constraint equations, the 
number of degrees of freedom is reduced from n to n~m. 
Moreover, for large systems the by are, in general, trans
cendental functions of the Xj and they are thus difficult to 
solve for m of the Xj in terms of the remaining n — m Xj. 
Hence, the question that arises is: What are the best methods 
for efficiently reducing equations (1) and (2) to a set of 
consistent equations that may be used to determine the motion 
of the system. 

Objective. The objective of this paper is to address and 
answer this question. The intent is to find "algorithmic" 
procedures suitable for large systems with many bodies. The 
analysis is made for connected rigid systems. Extension to 
disjoint and flexible systems can be obtained by generalization 
of the developed procedures. 

The balance of the paper itself is divided into four parts 
with the following part presenting the proposed reduction and 
solution procedure. Application with Kane's equations is 
presented in the next part. Examples and a brief discussion are 
presented in the final two parts. 
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Solution and Reduction Procedures 

Available Methods. If there are m constraint equations of 
the form of equations (2), the constrained multibody system 
will have n — m degrees of freedom. One approach is to reduce 
equations (1) and (2) to a consistent set of n — m equations and 
solve equations (2) for m, say the last m, of the Xj in terms of 
the remaining n — m Xj [20], The velocities and angular 
velocities of the multibody system can then be expressed in 
terms of these n — mxj. This in turn produces a reduced set of 
governing equations of the form: 

a/jXj =fi (/, y = 1,. . . ,n-m) (3) 

where the Sy and the / , are obtained from the ay and the / , 
after the m Xj are replaced in equations (1). 

This approach is particularly convenient for small systems. 
There are difficulties, however, in an automated formulation 
for large systems. Among these difficulties is the problem of 
obtaining a consistent solution of equations (2) for the m Xj. 

A variation of this approach is to consider equations (1) 
and (2) as a set of m + n equations for the n Xj and m con
straining force and torque components. However, this ap
proach also has the difficulty of not being readily adapted to 
an automated formulation for large systems, in addition to 
having the disadvantage of increasing the number of 
equations to be solved. 

A second approach to reducing equations (1) and (2) based 
on an ingenious matrix procedure discussed by Hemami and 
Weimer [21]': equations (1) and (2) are written in the matrix 
form: 

Ax=f and Bx=g (4) 

where A is an nxn symmetric matrix, B i s a n m x w matrix, 
and x, x, a n d / a r e n x l column arrays. The procedure is then 
to obtain the "orthogonal complement" C of B (an nxm 
matrix of rank n — m such that BC = 0), and to premultiply 
the dynamics equation by CT, the transpose of C. The 
governing equations are then: 

CTAx=CTf and Bx = g (5) 

Compared with the other approaches, this method is better 
suited for an automated formulation for large systems. Also, 
since BC = 0, it can be shown that the constraining force and 
torque components are eliminated from the ensuing 
equations. As noted in [21], however, the orthogonal com
plement matrix C is not unique. Also, in the absence of a 
formal construction procedure, C could be difficult to ob
tain - especially for large systems. 

A third approach is to combine the foregoing two ap
proaches. It is found that this can be done in such a way that 
the computational difficulties are avoided while the com
putational advantages are retained. The procedure, which is 
based on the zero-eigenvalues therorem as recorded by 
Walton and Steeves [23], is outlined in the following 
paragraphs. 

Zero-Eigenvalues Theorem. Let E be the n x n matrix BTB. 
Then the rank of E is less than or equal to m since from 
equation (2), the rank of B is less than or equal to m. Hence, 
the eigenvalue equation Ey = \y has at least n — m zero-
eigenvalues. Let yr (r=l, . . . , s) be the independent 
eigenvectors associated with these zero-eigenvalues, where s 
>n — w. Let 7" be the « x 5 matrix whose columns are yr. Then 

ET=BTBT=0 (6) 

By premultiplying by TT, it is seen that 

TrBTBT=0 or (BT)T{BT) = 0 or 57"= 0 (7) 

A similar approach is also presented in [22]. 

Therefore, T is an orthogonal complement of B. Finally, let 
the Xj (j = 1 , . . . , / ? ) be expressed in terms of s independent 
"generalized speeds" zr (r = 1, . . . , s) through the relation 

x=Tz or Xj = tjrzr (8) 

where z is the column array whose elements are zr and tJr are 
the elements of T. Equations (8) may now be used to reduce 
equations (1) in a manner similar to that of equations (5). 

Application: Kane 's Equations 

Kinematics. An ideal procedure for developing equations 
(1) is to use Kane's dynamical equations [14, 24-27]. In this 
procedure, the angular velocities of the bodies of the system 
and the velocities of their mass centers are written in the form: 

o>k = o>kjSXjiis and \k = vkjSXjtis (9) 

( J t = l , . . . ,7V;y'=l,. . . ,n;s=l,2,3) 

where n^ are mutually perpendicular unit vectors fixed in a 
convenient reference frame — usually an inertial reference 
frame, and, as before, there is a sum over the range of the 
repeated indices. The coefficients wkp and vkjks are the scalar 
components of the "partial angular velocity" and "partial 
velocity" vectors: du)k/dxj and d\k/dXj. They are functions of 
Xj and their functional form depends on the connection 
configuration of the bodies of the system [10]. 

By differentiation of equations (9), the angular ac
celerations of the bodies and the accelerations of their mass 
centers may be expressed as: 

<xk = (o>kjSXj + ukjsXj)ns and ak = (vkJSXj + vkjsXj)ns (10) 

Kinetics. If the system is subjected to known externally 
applied forces (for example, gravity or contact forces), they 
may be represented, on a typical body Bk, by a single force ¥k 

passing through the mass center together with a couple with 
torque Mk. Then the generalized active force Fj associated 
with*,-is [10, 25]: 

Fj = "kjsFks + o>kjsMks (11) 

where Fks and Mks are the ns components of F* and M* and 
where there is a sum from 1 to TV on k and from 1 to 3 on s. 

Similarly, let the inertia force system on Bk be represented 
by the single force F^* passing through the mass center 
together with a couple with torque Mk*. Then F^.* and Mk* 
may be expressed as: 

¥k* = -mknk (no sum) (12) 

and 

Mk*=-lk'ak-akX(lk-wk) (nosum) (13) 

where mk is the mass of Bk and lk is the inertia dyadic of Bk 

relative to its mass center. 
The generalized inertia force Fj* associated with i is [10, 

25]: 

Fj* = vkjSFks* + o>kjsMks* (14) 

where Fks* and Mks* are the ns components of F** and Mk* 
and where there is a sum over the repeated indices. 

Governing Equations. Kane's dynamical equations of 
motion (some-times called Lagrange's form of d'Alembert's 
principle) [25] are then: 

Fj+Fj*=0 ( / = l . . . . , n ) (15) 
By substituting from equations (9)-(14), equations (1) are 

obtained where «,-, and/ , are 
aij = mk vkis vkjs + Iksq wkis wkjq (16) 

and 

fi=Fi ~ (mkvkisVkusxu + ^ ksh^kis^kuhxu 

+ emhhsr<jikuwu>kvrwkihxiixii) (17) 
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where Iksh are the n, and n,, components of Ik, ewsh is the 
permutation symbol, and there is a sum over repeated indices. 

Constraint Equations. Equations (1) together with 
equations (16) and (17) represent the governing dynamical 
equations for open-chain systems. However, if the system has 
closed loops or specified motion of some of its members, 
equations (1) are no longer valid. Instead, there are constraint 
equations in the form of equations (2) which need to be 
satisfied to insure that the loops and specified motions are 
maintained during the motion of the system. For the loops, 
these constraint equations are holonomic [25] and they may 
be written in the form: 

h,(pcj) = 0 (i=l,...,p;j=l,...,n) (18) 

where p is the number of constraint equations due to the 
loops, n is the number of degrees of freedom of the un
constrained system, and p<n. (These equations may be 
obtained by simply adding to zero the relative position vectors 
of the connecting joints around the respective loops.) By 
differentiating, equations (18) become linear relations in the 
Xj and they may be expressed as: 

bvxj = 0 (i = l , . . . ,p;j=l,. . . , n ) (19) 

where the by are, in general, functions ofxj and t. 
For specified motion, the constraint equations take the 

form: 

bijXj=gi (; = 1, . . . ,q;j=\ ri) (20) 

where q is the number of constraint equations due to the 
specified motion, n is the number of degrees of freedom, and 
q<n. To illustrate these equations, suppose a point P of a 
typical body Bk has a prescribed velocity, say v(0- Then let 
v(0 be expressed in the form of equations (4). That is, let 

v(0 = vs(t)ns = vPjsXjiis (21) 

where vs(t) (s=l, 2, 3) are the n, projections of v. The con
straint equations are then simply: 

vPMxi«) = vi(t) 0 = 1 , 2 , 3;y'= 1,. . . ,«) (22) 

Similarly, suppose the angular velocity of typical body Bk is 
prescribed as 0(0- Then, from equations (9), the constraint 
equations take the form: 

V ; = Q((0 0' = 1, 2, 3; y = 1, . . . , n) (23) 

where Q,-(/) are the n, projections of 0(/). Equations (22) and 
(23) are thus of the form of equations (20). 

Although the loop constraints in equations (18) are 
holonomic, the specified motion constraints as in equations 
(22) and (23) are, in general, nonholonomic. However, this 
does not present any difficulty since in references [24] and [25] 
it is shown that equations (15) may be applied with both 
holonomic and nonholonomic systems. 

For the loops, the constraint forces are "internal," and as 
such, they do not contribute to the generalized active forces of 
equations (11) (see [25]). However, the constraint forces 
required to give points or bodies of the system a prescribed 
motion, may indeed contribute to the generalized forces. For 
example, if the force system required to give typical body Bk 

an angular velocity Q(t) and point P a velocity \{f), is 
equivalent to a force P passing through P together with a 
couple with torque T applied to Bk, then from equations (11), 
(22), and (23), the contribution of P and T to the generalized 
active forceFj is: 

Contribution to Fy. vPjsPs + wkjSTs (24) 

where Ps and Ts are the n^ components of P and T. 

Reduced Governing Equations. Using equations (8) the 
reduced governing equations are then obtained as follows: 
The velocity and angular velocity vectors of equations (9) may 
be written as: 

A B 0 D 

'-fSs <S k N , X X S 
1 

Fig. 1 Initial configuration of 15-link chain 

I n i t i a l 

Fig. 2 Chain configuration after release 

o>k=Ukjptjrzrnp and \k = vkJptjrzrnp (25) 

(k=\,. . . ,N;j=l, . . . , « ; 

p—l,2,3;r=l,. . . ,s>n — m) 

The generalized active and inertia forces then take the reduced 
forms 

Fr = vkjp tjrFkp + wkjp tJrMkp = Fj tjr (26) 

and 

F* = vkJp tjrFtp + akJp tJrM*kp = FJtJr (27) 

Notice that in view of equations (22), (23), (24), and (7), the 
constraining force and torque components associated with the 
specified motion do not contribute to the Fr. 

Finally, the governing dynamical equations become 

atjtirXj =fjtir (r= 1, . . . , s; i,j = 1, . . . , ri) 

or 

TTAx=TTf (28) 

where the «,-, and / , are given by equations (16) and (17) and 
are the elements of the nxn matrix A and n x l column vector 
/ , respectively. These equations, together with the constraint 
equations (2), govern the motion of the multibody system. 

Computer Methods. This approach, together with the 
procedures used to develop equations (16), (17), and (28), are 
ideally suited for the preparation of computer algorithms for 
their numerical computation and solution. Development of 
these algorithms might proceed as outlined in reference [10]: 
First, let the physical and geometrical parameters (masses, 
inertias, mass center locations, connection joint locations) of 
the bodies of the system be read into the computer. Next, let a 
"lower numbered body array" [10], defining the connection 
configuration of the system, be created. This array, together 
with initial values of the dependent variables Xj, can then be 
used to develop transformation matrices as well as the arrays 
vkjP< <JkjP> ukjp, wkJp and by. By using equations (16) and (17), 
together with information on the specified motion, the arrays 
ay, fi, and g, can then be evaluated. By knowing by, a 
standard eigenvalue subroutine can be used to assemble the ty 
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Fig. 3 Chain configuration after rebound 

array. Finally, the governing differential equation coefficients 
can be computed from equations (28). These equations, 
together with the constraint equations, may then be 
numerically integrated to obtain incremental values in the 
dependent variables. The process may then be repeated until a 
history of the configuration and motion of the system is 
obtained. 

Specific computer algorithms for generating and solving the 
governing equations have been written by using this general 
procedure. These algorithms have been assembled into a 
computer code applicable to a broad class of constrained 
multibody systems. Information about the code can be ob
tained from the authors. 

Examples 

To illustrate these procedures, a chain consisting of 15 pin-
connected links was placed in the configuration shown in Fig. 
1. The links were identical rods having a length of 1 ft 
(0.3048m). The system was then placed in a gravity field 
directed along a unit vector k, with support points A, B, C, 
and D as shown in Fig. 1. (The support points were spaced at 
3 ft (0.914m) intervals2.) Points B and C were then released 
while A and D were held fixed. Using the computer 
algorithms previously described, the ensuing motion of the 
system was numerically determined. Figures 2 and 3 show the 
system configuration at various times after release, as it drops 
and rebounds. 

To validate these results, the governing equations were also 
solved using the first of the reduction methods described in 
the foregoing - that is, by manually solving the constraint 
equations for two of the dependent variable derivatives and 
then forming a reduced set of governing equations. The 
results for both methods were identical. 

As a second example, and as an example illustrating 
prescribed motion, a system of five pin-connected links was 
placed in the configuration shown in Fig. 4. As before, the 
links were identical 1-ft rods. The system was then placed in a 
gravity field in the k direction and point B was given a con
stant acceleration of a 4 ft/sec2 (1.219/sec2) in the k direc
tion, while end A remained fixed as depicted in Fig. 4. The 
ensuing motion of the system was then numerically deter
mined using the computer algorithms described in the 
foregoing. Figure 5 shows the system configuration at various 
times. As before, the results checked identically with those 
obtained by the variable elimination method. 

Discussion 

A principal computational advantage of the developed 

Note that the configuration shown in Fig. 1 is not a static equilibrium 
configuration. 
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Fig. 4 Initial Configuration of five-link chain 

Fig. 5 Chain configuration with specified end motion 

procedure is that the orthogonal complement array is ob
tained automatically through using the eigenvectors of zero 
eigenvalues of the equation Ey = Xy. Moreover, these 
eigenvectors can be obtained efficiently through standard 
algorithms for determining eigenvalues and eigenvectors. 

A beneficial consequence of the procedure is that the 
constraining forces are automatically eliminated from the 
governing equations. Also, the procedure automatically leads 
to a set of independent generalized speeds zr (/• = 1, .- . . ,« — 
m). Interestingly, these generalized speeds do not appear in 
the final set of governing equations. Instead, they are 
eliminated in the formation of the reduced generalized forces 
of equations (26) and (27) through use of the reduced partial 
velocity and partial angular velocity vectors obtained from 
equations (25). Indeed, these reduced partial velocity and 
partial angular velocity vectors may be viewed as base vectors 
in the /•-dimensional space characterized by the z array. 

In this context, the columns of T are seen to be orthogonal 
to the rows of B, the constraint array. Hence, in the n-
dimensional space characterized by the x array, let the rows of 
B be considered as "constraint vectors." Then through the tJr 
in equations (28) the motion of the multibody system is 
constrained to directions orthogonal to these constraint 
vectors. Moreover, the final dynamical equations themselves 
may be obtained from the original dynamical equations (1) by 
simply taking the inner product with tjr - a procedure which is 
valid when equations (1) are in the form obtained through use 
of Kane's equations. 
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A Discussion of Alternative 
Duncan Formulations of the 
Eigenproblem for the Solution of 
Nonclassically, Viscously Damped 
Linear Systems 
An equivalent alternative formulation of the usual Duncan Method of solution of a 
system of general viscous damping is discussed. For the solution of systems this 
alternative statement of the problem is no better and is in fact potentially inferior to 
the standard method. A potentially important application however removes a 
significant limitation in the implementation of the local modification procedures of 
Weissen burger and Pomazal. 

Introduction 
The anaysis of damped linear systems was facilitated by 

Lord Rayleigh [1] by assuming that the distribution of 
damping within a structure takes the same form as either the 
distribution of mass or stiffness (or a linear combination of 
both). Proportional damping as used by Rayleigh was shown 
to be a special case of a move general "classical damping" by 
Caughey [2]. The classical damping assumption is applicable 
to a large range of structural applications where it provides 
significant computational attractions. There are however 
large classes of problems where such models are unacceptable 
and alternative methods of analysis are necessary. 

The method due to Duncan (Frazer et al. [3]) involves the 
augmentation of an nxn quadratic eigenproblem with a 
trivial identity to give a simpler 2« x In linear eigenproblem. 
Although it will be shown that there are two possible identities 
that may be adjoined, one has been almost totally 
predominant in the literature. The alternative augmentation is 
considered here, which in general is less useful, but has a 
potentially important application. This method has been used 
recently by Meirovitch [4] but without any comparison. 
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Classical Damping 

The behavior of an n degree-of-freedom, viscously 
damped, linear system may be represented by the equation 

Mx + Cx + Kx=f(t) (1) 
where 
M is n x n positive definite symmetric. 
K,C, non-negative definite symmetric, 
x displacement vector, 
f(t) vector of applied forces. 

The modal method of analyzing (1) requires transformation 
of the homogeneous form of (1) to the frequency domain to 
give the eigenproblem 

(MA2+CA + K)* = 0 (2) 

The common assumption of Classical Damping allows the 
solution of (2) to be directly related to the solution of the 
corresponding conservative problem: 

(LM + K)* = 0 (3) 
The eigenvalues of (3) are all negative unless K is singular 

when some may be zero. The eigenvectors are real and (even 
for equal eigenvalues (Bishop et al. [5])) give the or
thogonality relation: 

<^K 4>s = <t>/M <f>s = 0 (4) 
If we now form the modal matrix 

* = ( < A , *„) (5) 

Then this matrix may be used to give a coordinate trans
formation which uncouples (3) into n independent single-
degree-of-freedom systems: 

x = i>q (6) 

m = *7"M * = diag (m,J (7) 

904/Vol. 51, DECEMBER 1984 Transactions of the ASME 

Copyright © 1984 by ASME
Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



K = * r K * = diag {«,-) (8) 

This gives 

,(/xm + K)q = 0 (9) 

The damped system (3) is classical if 

* r C * = c = diag (c,) (10) 

The necessary and sufficient condition was provided by 
CaugheyandO'Kelly[6]. 

K M " ' C = C M ' K (11) 

The most usual form of classical damping is proportional 
damping 

C = aM + /3K (12) 

It can be seen that analogous to (9) we are able to uncouple the 
system of equations (3) to give 

diag {\2mi + \ci + Ki}q = 0 (13) 

which is again resolved into n independent single-degree-of-
freedom systems. The eigenvectors are identical to the 
original problem (3) and eigenvalues occur in complex pairs. 

Nonclassical Damping 

If the C matrix fails to satisfy (11) then there is not in 
general a coordinate transformation of the initial eigen-
problem (2) to the diagonal (uncoupled) eigenproblem (13). 
The widely used method generally attributed to Duncan 
adjoins the trivial identity: 

M J C - M J C = 0 (14) 

to the system in (1) giving 

oocjvxf)-(;„) ™ 
writing 

A = / 0 M \ B = / - M 0 \ y = / * \ 
\ M CJ' \ 0 K ) \x) 

transforms the homogeneous form of (15) to the eigen
problem 

\Ay + By = 0 (16) 

Both the eigenvalues and eigenvectors of (16) will now be 
complex in conjugate pairs. Although the form of (16) 
duplicates that of (3) it has lost sign definiteness from both B 
and A. In addition to having complex eigenvectors, it may be 
that the eigensystem is defective, i.e., there may not be a 
complete set of eigenvectors. (This can occur only when 
repeated eigenvalues are found.) The theoretical implications 
of such cases are however beyond the scope of this paper. 
They are however covered thoroughly in standard texts in 
linear algebra (e.g., Noble [7]). 

As an alternative augmentation to the original eigen
problem (2) consider now a further trivial identity: 

KJC-KJC = 0 (17) 

Adjoining this to (1) gives 

(0M-K)«MK0K)(fMr) ('» 
Defining 

P = / M 0 \ Q = / C K \ 
\ 0 - K / ' VK 0 / 

and using the homogeneous form of the eigenproblem: 

(X P + Q)y = 0 (19) 

Because equations (16) and (19) represent the same physical 
problem, the same eigenvectors and eigenvalues must be 

common to the two problems. Thus (19) apparently provides 
an equally good method of solving (1). 

We may however perceive a reason for the choice of (16) 
rather than (19) that is something more than arbitrary. 
Considering the relatively comon case when K is singular 
then: 

P, Q, and B are all singular, 

only A is nonsingular. Consequently only (16) may be con
verted to a standard eigenproblem (by Choleski factorization 
for example.) 

If given the choice between an eigenproblem with at least 
one nonsingular matrix and one where neither is guaranteed 
the prudent analyst will choose the former. This will decrease 
(but not eliminate entirely) some of the computational 
problems associated with singular stiffness matrices. Thus in 
the absence of any demonstrable advantages of the alternative 
formulation the historical development is vindicated. It will 
however be shown that the alternative formulation has 
significant advantages in some local modification problems. 

Local Modification Methods of Weissenburger and 
Pomazal 

Consider the conservative eigenproblem (3). Let it be 
assumed that a full set of eigenvalues A, are known such that 

Xi<X 2 < X„ 

and the corresponding eigenvectors </>,. By suitable, scaling of 
eigenvectors it is possible to perform the coordinate trans
formation (6), (7), and (8) to transform the M and K matrices 
to 

m = diag[^-] (20) 

k = I (identity) (21) 

Consider now a mass modification Am at the ;th coordinate. 
Now the new mass matrix is given by 

M ' =M + Am e,e,r (e,-unit vector) (22) 

and the new mass matrix in transformed (normal) coordinates 

m ' =m + Am r/>, = m + 5m (23) 

where r, is the rth row of * defined in (5). 
We may write the modified system as 

(m' + x K)q = 0 (24) 

where v,• = - 1 /uj where u, is a natural frequency of the 
modified system. 

We may solve (24) as a straightforward eigenproblem, but 
the analysis of Weissenburger [8, 9] shows how to exploit the 
structure of the modification matrix 6m. By his method the 
relationship between the eigenvalues and eigenvectors of the 
modified system and the original eigenproperties is derived 
explicitly. This is potentially valuable information in un
derstanding the behavior of the system. (Weissenburger also 
applied similar analysis to stiffness modifications.) 

Weissenburger transforms the eigenproblem (24) to an 
alternative problem: 

E - ^ — =0 (25) 

where /•,-,„ is the «th element of /•,-. The n eigenvalues of (25) 
may now be found using a Newton-Raphson method, again 
exploiting the relation to the structure of the original 
problem. 

The eigenvectors of (24) may be found using 

q,k = /J,-/-,-, 
Hj.k ^_UK_ ( 2 6 ) 
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where qj:K is the kth element of theyth eigenvector of (24); /3 
may be any suitable eigenvector normalization coefficient. 
The terms of qj are the coefficients of the eigenvectors of the 
original problem and hence we have the required relationship 
between the initial and final solution. 

The work of Weissenburger on conservative systems was 
extended to systems with both classical and more general 
forms of viscous damping by Pomazal [10, 11]. Since a 
modification to a classically damped system is likely to result 
in a nonclassically damped system it is necessary to use a 
Duncan form of (23). 

The Duncan form used by Pomazal is (15) the formulation 
that appears to be used almost exclusively in the literature. 
Bearing in mind the proviso concerning equal roots (a subject 
covered exhaustively in the text) the incorporation of stiffness 
of damping modifiations follows that of Weissenburger since 
a stiffness modification Ak at the /th coordinate may be in
corporated into B in the form: 

6B = Ak e„+ien+1
T (27) 

and a damping modification Ac at the rth coordinate may be 
incorporate into A in the form: 

8A = Ac en+ie
T

n + l (28) 
Thus a stiffness or damping modiciation results in a form that 
may be treated in the same way as the analysis provided by 
Weissenburger for the conservative case. 

Consider now a mass modification Am at the /th coor
dinate. This will modify A by 

&A = Am(en+ieT + eie„J) (29) 
and will also modify B by 

8B = AOT e,ef (30) 
It is now no longer possible to apply Weissenbuger's 
procedure although Pomazal suggests that it may be im
plemented in three stages. In doing this he observes however 
that the computational advantage of applying Weissen-
burger's procedure will be lost. 

From a practical viewpoint the variation of mass in a 
structure is usually more straigtforward to implement than 
either stiffness or damping changes. Thus the increases 
computational effort for mass changes was acknowledged by 
Pomazal to be a serious limitation of the method. 

Consider now the effect of a mass change on the alternative 
formulation of the Duncan form (19): 

(XP+Q)F=0 (31) 
since the mass matrix M now occurs only once in the par
titioned form of P the effect of a mass change Am at the /th 
coordinate gives rise to SP: 

$P=Am e,ej (32) 
we may therefore reduce a mass modification to this form
ulation of the Duncan form to a standard Weissenburger 
problem. The mass modification now needs only one com
putational step for its incorporation, thus eliminating the 
limitation identified by Pomazal. 

Conclusion 

The alternative formulation of the Duncan transformation 
has some disadvantages over the standard formulation for 
solution of nonclassically viscously damped systems. If the 
solutions of such a system are known however use of the 
alternative form will overcome the (significant) limitations 
encountered by Pomazal in the analysis of mass 
modifications. 
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Oscillator Response to 
Nonstationary Excitation 
Analytical solutions are presented regarding probability density distributions of 
various response parameters of a lightly damped oscillator. The oscillator is sub
jected to a broad-band stochastic excitation which possesses a time-variant power 
spectrum. The analytical solutions are derived by utilizing appropriate Fokker-
Planck equations which govern Markovian approximations of the response 
parameters considered. The reliability of the approximate analytical solution is 
tested by using pertinent data generated by a digital Monte Carlo study. 

Introduction 

In dealing with problems of linear random vibration, 
basically two approaches can be followed. In the first, the 
system response is expressed in terms of the system excitation 
by using a convolution integral. This representation leads to 
determinations of the statistical moments of the response but 
not to a direct determination of its probability density func
tion. For this purpose appropriate theorems of the theory of 
probability must be considered. For example, the response of 
a linear system to Gaussian excitation, will be Gaussian, as 
well. This approach has been successfully applied to deter
mine response statistics for both stationary and nonstationary 
excitations [1-6]. The second approach is applicable only if 
the response parameter considered is exactly or ap
proximately, a Markovian process. In this case the backward 
and forward Kolmogorov equations can be used to deal with 
the problem of determining the probability density of the 
response parameter. However, the class of the Kolmogorov 
equations that is amenable to a general, nonstationary, exact 
solution is limited. Pertinent expressions have been obtained 
for linear single and multidegree-of-freedom systems excited 
by stationary white noise [7], and shot noise [8]. The method 
of separation of variables and eigenfunction expansion for the 
resulting eigenvalue problem is often used [9, 10]. For more 
realistic excitation models of several physical phenomena 
provided by nonstationary processes, the derivation of the 
exact solutions of Kolmogorov equation becomes a quite 
difficult task. 

In this paper, it is shown that it is possible to derive reliable 
approximate analytical expressions for the time-dependent 
probability distributions of several response parameters of a 
randomly excited and lightly damped linear oscillator. The 
excitation is not necessarily Gaussian and possesses an ar
bitrary broad-band, time-variant power spectrum. This is 
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accomplished by solving appropriate Fokker-Planck or 
backward Kolmogorov equations. Numerical simulations 
data are used to test the reliability of the developed analytical 
solutions. 

Mathematical Formulation 

Consider the motion of a single-degree-of-freedom linear 
oscillator with damping ratio denoted by f, and natural 
frequency denoted by a>„ 

x + 2fa„x + u>2
nx= w(t). (1) 

The excitation w(t) is a nonstationary, zero-mean, random 
process possessing a time-variant power spectrum Slv(a>,0- It 
is assumed that Sw(u),t) is broad-band over the entire duration 
of the motion. It is known that w(t) admits a spectral 
representation of the form [11] 

m=[ A (o},t)exp(jo>t)dZ(oi), (2) 

where A(w,t) is a function of time and frequency, slowly 
varying with time. The symbol Z(o) represents a random 
process with orthogonal increments, that is, 

E[dZ(wi)dZ*(uj)] = buE[ I rfZ(o),-) 12] = SuS(ui)dui. (3) 
In this equation E[ ] represents the operator of 
mathematical expectation, 5,y is the Kronecker delta, the 
asterisk denotes complex conjugate, and S(co) is an ap
propriate stationary power spectrum. The power spectrum of 
w{f) is given by the equation 

Sw(«,0= \Ab*,f) 12S(o)). (4) 
Next, the amplitude a(t) and phase 4>{f) of the response are 
defined implicitly by the equations 

x(t) = a(t)cos[wnt + <i>(t)], (5) 
x{t) = -a(0w„sin[w„f + </>(/)]• (6) 

Stochastic ordinary differential equations governing the 
evolution of a(f) and <f>(i) can be obtained by combining 
equations (1), (5), and (6). These equations can be partially 
decoupled using an approximate averaging technique. This 
technique is applicable for lightly damped oscillators sub
jected to compatibly "weak" excitations. That is 
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f < < l . (7) 
Sw(co,/) = 0(0 as f - 0 -Kf (8) 

The averaging procedure consists of a deterministic and a 
stochastic part and is described extensively in references such 
as [9, 12, 13]. It leads to the following first-order stochastic 
differential equations for a(t) and <f>(t), respectively, 

« = ~fw«a+ — r - j + iJi(0. 

\/irSw(un,t) 
</> = : i j2(0. 

co„a 

(9) 

(10) 

In these equations ^ ( r ) and ij2(0 a r e stationary, zero-mean 
uncorrelated white noise processes with unit intensity. 
Therefore, the response vector («,</>) becomes approximately a 
two-dimensional Markov process. 

Fokker-Planck Equations 

The Fokker-Planck equation associated with equations (9) 
and (10) is 

1 v - , [ ( - -^*»-£-«- ( 1 1 ) f«» dt da 

The symbol/=/(«,</>,rlai,0i,r,) denotes the joint transition 
probability density function of a(t) and 0(0; it is defined as 
f{a,<j>,t\ax ,</>, ,/j)c?arf0 = Prob[ the amplitude and phase are at 
time t at the differential element centered at point (a,</>) and 
with sides da, d<j>, given that at time rt they were at the dif
ferential element centered at point («i,</>i) and with sides 
dax,d4>\\. The function s2(f) is defined by the equation 

* 0 = ^ $ . (12) 

For notational convenience introduce the new variable 

* = w„/ + 0. (13) 

This change of variables alters the form of equation (11) to 

V 3? fw« 
+ co„ 

a* )-st(-^M 
+*2(0 

a2/ *2w a2/ 
(14) 

a«2 a2 a*2 ' 
It is clear that now/stands for the transition density function 
/(a,*,? I a,, i{,ti) of the Markov vector (a,*). The initial 
condition for / is 

/(a,*,?, Ia, ,*1 , /1) = 5(fl-a1)fi(*-*i)- (15) 

Clearly, this condition implies that there can be no change in 
the state of the system if the transition time is zero. It is noted 
that the domains of amplitude and phase are, respectively, the 
sets [0, oo) and ( - oo,oo). Compatibly with the physics of the 
problem, the boundary conditions for/must be 

/ (oo,*, / |a 1 ,* 1 , / , ) = 0, (16) 

/(0,*,H a,, *,,*,) = finite, (17) 

and 

/ ( a ,$ + 27r,rla1 ,*1 , / ,)=/(o,*.^Oi.*i.?i)- (18) 
Equation (14) does not appear to lend itself readily to exact 
solution by any of the standard methods that are applicable to 
partial differential equations. Therefore, the determination of 
the transition density function / ( . I.) is not pursued any 
further at this point. Instead, it is decided to concentrate on 
deriving statistics for the processes of response displacement 
and velocity. For brevity, the quantity x/co„ is set equal to a 
new variable y 

y=x/o,„. (19) 

From this point on, both y and x are called velocity, in
discriminately. .Using this new notation, equations (5) and (6) 
can be written in the form 

x = acos$, (20) 

y = - a s m * . (21) 

Equations (20) and (21) are utilized in transforming equation 
(14) into an equation governing the transition probability 
density function g=g(x,y,t\xuyi,t\) of the displacement and 
velocity. Analogously to the previous definition, the function 
gis defined as g(x,y,t\xl,yutl)dxdy = Prob[the displacement 
and velocity are at time t at the differential element of the 
phase plane centered at point (x,y) and with sides dx,dy, given 
that at time f, they were at the differential element centered at 
point (xx,yi) and with sides dxl,dyx\. To derive an equation 
for g, the relationship between the probability density func
t ions/and g is written as 

f{a,i,t\ai^l,tl) = g(x,y,t\xuyuti)\J\. (22) 

The symbol \J\ signifies the absolute value of the Jacobian of 
the transformation expressed by equations (20) and (21), 
specifically / = - a . Substituting equation (22) into equation 
(14) and replacing the differential operators in terms of * and 
y, after some tedious mathematical manipulations, the 
following equation is obtained for g 

i dg a a 
r- = -r-(xg)+~(yg) 

fa„ at ox ay 

d2g , d2g 

dx2 by2 (23) •7 (-'-£«-£ W -
In addition to satisfying equation (23), the function g must 
satisfy the initial condition 

g(x,y,ti \xl,yl,ti) = 8(x-xl)5(y-yl), (24) 

and the boundary conditions 

g(±°°,y,t\xuyut1) = 0, (25) 

g(.x,±c°,t\xl,yi,ti) = 0. (26) 

Displacement-Velocity Statistics 

Transition Probability Density. Equation (23) is a second-
order partial differential equation involving the independent 
variables t,x,y. However, its order can be reduced to one by 
introducing the characteristic function 

M(6l,62,t)=\ \ g(x,y,t\xiO>i,ti) 
J - o o J - o o 

exp(idlx + id1y)dxdy. (27) 

In terms of M, equation (23) becomes 

1 dM 

Wn dt 

(, e2\dM 62\ dM 

+ (di' h) w= ~s2(0[e'+d2]M- (28) 
{/ d02 

Furthermore, equation (24) yields 

M(6u62,tl) = exp(ielxl +id2y,). (29) 

The general solution to equation (28) can be obtained by first 
solving the subsidiary equations 

dt de\ d81 dM 
(30) l / f«» 0, s2(t)[82 + d2

2]M 
1 r l r 

Note that the first two of these equations constitute a system 
of two simultaneous linear differential equations in 0,, 82, 
with solution 
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0, = exp(fco„0[cicos(co„0 + c2sin(a;„0] (31) 

02 = exp(fw„0[c2cos(w„0-c,sin(£o„0]. (32) 

Based on these results the solution to the third equation is 
found 

{(.e M e x p (^ + ^)exp(-2fco„0 
2u, 

j ̂  exp(2 fw„ z)Slv (w„ ,z)cfe| = c3. (33) 

i
oo p oo 

P(xl,y[,tl)g(.x,y,t\xl,yl,tl)dxldyl. (41) 
— oo J — oo 

This general equation is next applied to the case, frequently 
encountered in engineering applications, of an oscillator 
having initially a known displacement x* and velocity y*. 
That\s,XQ=x{fi) = x" andy0=y(G)=y*, or equivalently 

P(x0,y0,0) = 5(x0 -x*)b{y0 -y"). (42) 

If equation (42) is substituted into equation (41), the 
probability density function of x and y is obtained in the form 

Clearly, c,, c2, and c3 are constants of integration. The 
general solution to equation (28) is next constructed in the P(x,y,t) = 
form [14, 15] 1 r 

2 ui 

[x-e-li"" (x*cosco„r+^*sinco„01 
1c 

J ' i 
exp(2 fa nz)Sw(«>„,z)dz (34) v!Tc e x p 

1 ( Lv-e-f"" (-x*sinco„?+.>>*cosa)„0]2 

[- 2c )• 
(43) 

where * is an arbitrary function. Satisfaction of the initial where c = c(0,t). 
condition specified by equation (29) requires that ^ be of the It is a straightforward matter to calculate moments of any 
form order for the displacement or velocity. In particular, the mean 

* = exp{« f lexp[-f8 / iu-/1)][0icosco (1(/-/1) v a l u e s a r e
 £[x] = .-rv^cos^+^sinc^) (44) 

-e.sme^t-t^ + iy^xpl-^U-t,)] EM = e - K ' ( _ ^ s i n c o ^ + ^ c o s w „ 0 (45) 

[0, sinw„ (t-tt) + 02cosu„ (/ - tx)]) (35) w h i l e t h e v a r i a n c e s are given by the strikingly simple form 
Thus, equation (34) becomes 

M(dl,e2,t) = exp\idlexp[-fa„V-t1)] 

[XiCosu^t - tt) + y{smu„(t - tt)] 

+ i02exp[-fa„(t-tl)][-xisma„(t-t1)+ylcosu„(t-ti)] 

- — r - ^ e x p ( - 2 f < V ) — exp(2 fr„z)Sw(u„,z)dz}. (36) 
2 af, J(, 

The last equations is readily recognized as the characteristic 
function of a two-dimensional Gaussian distribution with a 

means values 

a2
x(t) = a2

y(t) = c(0,t). (46) 

It must be noted however at this point, that the exact solutions 
for E[x] and E\y] can be readily determined by solving the 
homogeneous part of equation (1) with initial conditions 
x(0) = x* and x(0) = x*. Specifically it is found that 

E[x] = [x*(wdcoso)dt+fansmaidt) + x*sino3dt] (47) 

x = exp[-fan(t-ti)][xlcosw„(t-t1)+yisuuan(.t-tl)] 
(37) 

y = exp[-fwM(f-f,)]{-x,sinw„(f-f1)+.>'1cos«,1(f-f,)) 
(38) 

and variances, for both x and.y, equal to 

E\y] 
E[x] -tun' 

"rf 
[-x*u}„sino}dt 

H (cjdcoso)d?- fwnSin&vf], (48) 

ca , , / )= - jexp(-2fw, 
J'I 

exp(2fw„z)Sw(«n>z)dz- (39) 

Therefore, the solution for the transition density function of x 
and y is 

g(x,y,t\xl,y1,tl) = 
1 

2TT c(f! ,0 
exp -

(x-x)2+(y-y)2 

2 <#,,/) 
] (40) 

where ud = «„ V r ^ p T T h e s e equations are exact irrespective 
of the magnitude of f. Therefore, as is readily seen equations 
(44) and (45) are accurate if O(g) terms are neglected. 

Amplitude-Phase Statistics 

Transition Probability Density. The availability of the 
statistics of x andy can have an immediate application toward 
the determination of the statistics of a and *. Specifically, by 

Unconditional Probability Density. The Markovian simply transforming variables via equations (20)-(22), 
property of a process is quite advantageous since the equation (40) yields the joint transition probability density 

function of the amplitude and phase, 7=t-tx >0 , 

/ ( a , " M a , ,$ , , ; , ) = 
2TT c(f! ,0 

exp 
[ a c o s ^ - a ^ o s ^ ! + wn

T)e f"" r ] 2+ [asin$-a1sin(*1 +co„T)e~f"nT]2 

2c(tut) 
(49) 

availability of the transition density function can lead to the 
determination of any order statistics. For the two-
dimensional Markov vector (x,y), one can find the joint 
unconditional probability density function as follows. 
Suppose that the probability density function of x and y at 
time /, >G,p(xx ,yx ,/i) is known. The the density function of x 
and y at time t > ?, is given by the equation 

Actually, it can be shown, by direct substitution, that 
equation (49) satisfies equation (14). This verification is 
tedious and will not be presented here. Note that equation (49) 
satisfies, as well, the conditions expressed by equations 
(15)-(18). 

Clearly, if the initial values of amplitude and phase are, 
respectively, a* and $*, given by 
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a* = \lx*2+y'2, 

* * = - t a n - ( ^ ) , 

(50) 

(51) 

then, the joint unconditional density of a and *, after ap
propriate cancellation of terms, is 

p(a,3>,t) = 

27c6 X P[-
a2 -2aa*cos($-$* -w„t) + a*2e-2!:"'>' 

2c 

(52) 

It is noted that for nonzero initial oscillator conditions the 
response amplitude and phase are statistically dependent. On 
the contrary, when the oscillator is initially at rest, a*=0, 
then 

/?(a,*,7) = — — e x p ( - 4 - ) =P(*M«,0 , (53) 
2ir c \ 2c I 

That is, a and $ are statistically independent. In addition, the 
distribution of the phase is uniform in the interval [-7r,ir), 
while the distribution of the amplitude is of a Rayleigh type. 

Unconditional Probability Densities. If equation (52) is 
integrated over phase, it yields the probability density func
tion for the amplitude. Specifically, it is found that 

that is, the distribution of phase is uniform in the interval 
[ - 7r,7r). This type of distribution has been derived previously, 
equation (53). 

(770 The distribution that p(*,7) depends on the time 
function exp( - 2fa„t)/c. The behavior of this function can be 
readily studied by using equation (39). Specifically, 

exp( - 2fa„7)/c = — [\Q exp(2fa)„z)Sw(w„,z)dz\ . (59) 

Clearly, if the spectrum S„(o),t) exhibits an exponential decay 
with time, such that exp(2fa„t)S„(oj,t)-0 as f—<», then the 
left-hand side of equation (59) becomes eventually constant. 
Consequently, as 7— oo, the phase distribution becomes 
mathematically simpler. Furthermore, if S„(u,t)=s(u), 
equation (59) yields 

l i m p ( $ , 0 = = - . (60) 
<-o 2.-K 

That is, for a step-modulated stationary excitation, regardless 
of the initial state, the distribution of the phase becomes 
eventually uniform 

Energy Statistics 

Another useful application of the statistics of the am
plitude, as derived in the foregoing, is the determination of 
statistics for the total energy per unit mass of the oscillator 

r n2+a*1p-2i"n'] r /aa"e~l""'\ .... 1 / 1 , 1 . , \ 

[ - g + g 2c Ĵ C ^ )• (54) £ W = ^ ( T * * + 2 - m * V p(a,t) = — exp 
c 

In equation (54) use has been made of the following 
relationship [16] regarding the Bessel function I0 

1 f 
A)(z)= — exp(±zcos^)rf^. (55) 

ir Jo 
The expression of equation (54) is identical to that reported in 
reference [17], where the statistics of the amplitude alone have 
been studied. This result supports the validity of the derived 
expressions and verifies the consistency of the procedures 
followed. 

Equation (52) integrated over amplitude would yield the 
probability density function of the phase. This procedure is 
lengthy, and after several manipulations yields 

2 T L 2c J 
a*e- r<v cos(# - ** - w„t) 

2V27TC 

exp[-

[ l + e r f ( 

a*2e-2f""'sin2(*- ** -os„f)' 

2c 

a * e - K ' c o s ( * - $ ' - o ) „ 0 
Vic •)] (56) 

Some of the properties of this distribution directly derivable 
from equation (56) deserve special attention. 

(0 When 7 - 0 , then c - 0 , exp ( - f r>„7)- l , erf(o*/2c)-l) , 
and the phase * (now denoted by 3>0) will be close to $* with 
the consequence that cos ( $ 0 - $ * ) = l , and sin ($0 ~ 
$*) = $o - $*. Under these conditions 

Combining equations (54) and (61) yields 

(61) 

1 r E + E*e"2tw"'l /2-jEE*e~^n<\ , _ 
p ( £ , 7 ) = — e x p - 70( T ) . (62) 

where E* is the energy of the oscillator at time 7 = 0. Then, the 
moments of the energy can be determined by using the 
following equation [17] 

P °° / 0)1 \ " f °°2m / W?, \ '" 

••{-£) (2c)"T(l+m)exp[ \M 

+ 777,1, ' 
7*2„-2fo)„r 

2c - ) • 
(63) 

In equation (63) M(. , . , . ) , and T(-) denote the confluent 
hypergeometric function and the gamma function, respec
tively. Note that if the oscillator is initially at rest, equation 
(62) yields 

p ( £ , 7 ) = — e x p ( - — ) (64) 

which is the classical Maxwell-Boltzmann exponential 
distribution. 

lim p(*,7) = lim 
(-0 

1 

-o V27T c/a*2 

r ( * - ** ) 2 -] 

exp 

= «<#„-**), L 2c/a*2 

which is the actual distribution of the phase at zero time. 

(77) If the structure is initially at rest (a* = 0), then 

27T 

Numerical Simulations - Discussion 

It has been deemed important to test the validity of the 
derived analytical expressions by comparing them with data 

(57) generated by appropriate numerical simulations. 
As excitation w(t) has been selected, a modulated broad

band process which can be expressed in the following form 

w(t) = mv«)- (65) 

(5g\ In equation (65) v{t) is a stationary random process with 
power spectrum S„(co) = S0 lsincoT*/coT* I where S0 and T* are 
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Fig. 2 Response phase probability density at discrete time 

constants. Furthermore \p(t) is a deterministic slowly varying 
function of time. In this case the evolutionary power spectrum 
of w(0 is given by the equation 

Sw(«,f l=IW)l2So 
sinccr* (66) 

The modulating function ^(/) which has been chosen is given 
by the equation [5] 

W) = kl(e-^'-e-ll2i), />0, /32>(3,>0, (67) 

where (3, =0.25 sec"1 , (32=0.50 sec - 1 , and kt is a nor
malization constant such as ^max = l. Furthermore, the 
constant spectral value S0 has been selected to yield 

•JirS0/2fa3„ = 1 (length unit). (68) 

The case of an oscillator with co„=2ir rad/sec, f=0.02, 
x* = l (unit), and x* = -co„/V3 (units) has been considered. 
An ensemble of 3000 oscillator response records has been 
digitally simulated for T* = ir/10co„. 

Figure 1 shows how the total energy of the oscillator is 
distributed at different times. Initially, the energy takes on 
values close to E*; theoretically its probability distribution is 
a delta function at E*. As time advances and the motion 
builds up, the energy can take on values appreciably different 
from E*. Thus, its probability distribution spreads out over a 
broader range. Finally, as the oscillator comes to rest the 
energy assumes small values and its probability density 
function "shrinks" to become a delta function at zero. As is 
shown in Fig. 1 the analytical curves fit the simulated points 
quite well. 

The evolution in time of the phase distribution is shown in 
Fig. 2. Initially, the values of the phase are clustered in the 
neighborhood of $* = 17/6. However, as time increases the 
probability mass is distributed over a much broader range of 

b d 
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0 5 ID 15 ~3> 25 

Fig. 4 Response displacement and velocity variances versus time 

values in the interval [ - TT.TT). Again, a quite close agreement 
between the theoretical and simulation results is seen. 

In Fig. 3 the Gaussian distribution of the displacement is 
shown for the same oscillator. It is observed that this 
distribution starts as a delta function at x* = l, it broadens 
with time, and it becomes again a delta function at zero as the 
motion ceases to exist. The analytical curves and the 
simulation data match quite well. It must be noted that the 
quality of the agreement of the theoretical and the simulated 
data shown in Figs. 1-3 is slightly influenced by the fact that 
the calculations have been made for times which correspond 
to integer multiples of the undamped natural period of 
oscillation, that is t = ti = l2ir/w „ , 1=1,2 . . . . Clearly, the 
oscillatory terms that have been neglected in deriving 
equations (9) and (10) vanish at t = th Therefore, the 
reliability of these equations is enhanced at t=th This 
comment can be further supported by observing that for 
f < < 1, thus ud ~ to,,, equations (44) and (45) coincide with the 
exact equations (47) and (48) for t = tt. In any case, since the 
exact solutions for the time-dependent mean displacement and 
mean velocity of the oscillator are readily available, the 
usefulness of the developed approximate solutions should be 
also assessed based on their reliability in predicting the 
variances of the displacement and the velocity of the oscillator 
response. In this regard, Fig. 4 shows an excellent agreement 
between the theoretical results and corresponding simulation 
data along the entire duration of the excitation. 
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Concluding Remarks Acknowledgment 
The statistics of several response parameters of a lightly 

damped oscillator excited by a broad-band random process 
have been examined. The amplitude and phase of the response 
have been approximately modeled by a two-dimensional 
Markov vector. The corresponding Fokker-Planck equation 
with proper initial and boundary conditions appended, has 
been considered. This equation has led to analytical ex
pressions providing the transition probability densities of the 
amplitude-phase, and the displacement-velocity vectors. 
Furthermore, solutions have been derived for marginal 
probability densities of the displacement, velocity, amplitude, 
phase, and total energy of the oscillator response. The 
reliability of the analytical solution has been tested by con
sidering the response of the oscillator to an excitation the 
power spectrum of which varies exponentially in time. The 
analytical results have been found to be in close agreement 
with data produced by a Monte Carlo study which involved 
3000 digitally simulated response records. It is noted that 
some of the approximations involved in the derivation of the 
solutions which have been presented in this paper are similar 
to those commonly used in addressing a classical random 
vibration problem. Specifically, the stationary response 
statistics of a lightly damped linear oscillator to a broad-band 
stationary excitation can be approximately determined by 
replacing the original excitation by a white noise process; its 
constant spectrum is taken equal to the spectral value of the 
original excitation at the natural frequency of the oscillator 
[14]. The validity and the limitation of this approximation has 
been examined extensively. These examinations could be used 
to supplement the information provided by the presented 
Monte Carlo data in connection with the reliability of the 
method. Finally, it must be recognized that the developed 
solutions are based on treating the random excitation, in 
many respects, as a shot noise. Thus, expressions for various 
response statistics could be determined by using equation (1), 
and input-output relationships of linear systems which are 
valid irrespective of the amount of damping. However, this 
approach does not take advantage of the smallness of 
damping and does not appear to lead to a direct proof of the 
Gaussian property of the response, unless the excitation is 
Gaussian. 

The financial support of this work by the grant NAG-3-210 
from the NASA Lewis Research Center is gratefully 
acknowledged. The second author would like to express 
thanks to Professor S. Ariaratham for his constructive 
comments. 
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Effects of Warping and Pretwist on 
Torsional Vibration of Rotating 
Beams 
The effect of pretwist and warping on the torsional vibration of short-aspect-ratio 
rotating beams is examined for application to the modeling ofturbofan, turboprop, 
and compressor blades. The equations of motion and the associated boundary 
conditions by using both Wagner's hypothesis and Washizu's theory are derived 
and a few minor limitations of the Wagner's hypothesis, as applied to thick blades, 
are pointed out and discussed. The equations for several special cases are solved in a 
closed form. Results are presented indicating the effect of warping, pretwist, and 
rotation on torsional vibration of beams as aspect ratio is varied. The results show 
that the structural warping and pretwist terms have a significant effect on torsional 
frequency and mode shapes of short-aspect-ratio blades whereas the inertia! 
warping terms have negligible effect. Since the torsional frequencies and mode 
shapes are very important in aeroelastic analyses by using modal methods, the 
structural warping terms should be included in modeling turbofan, turboprop, 
compressor, and turbine blades. 

Introduction 

It is well-known that a rotating beam experiences a cen-
trifugally induced tensile force that increases the effective 
torsional stiffness. The increase in stiffness under the action 
of a tensile force was intuitively explained by Wagner [1], 
Budiansky and Mayers [2], and Houbolt and Brooks [3]. This 
intuitive approach has become known as Wagner's hypothesis 
and will be described later. Biot [4] and Goodier [5] showed 
the same increase in stiffness by applying the theory of 
elasticity. 

By extending Wagner's hypothesis to pretwisted beams 
without explicitly considering warping, Chu [6], Houbolt and 
Brooks [3], and Carnegie [7] showed that there is an increase 
in torsional stiffness due to pretwist. Washizu [8] and Shorr 
[9] showed a similar increase in stiffness by using the theory 
of elasticity and by explicitly including warping. Although not 
specifically stated, the other researchers [10-13] have im
plicitly used Wagner's hypothesis to derive the equations of 
motion that include rotation and pretwist and showed a 
similar increase in torsional stiffness. 

Without using either Wagner's hypothesis (implicitly or 
explicitly) or warping of the cross sections of the beam, Rosen 
and Friedmann [14] concluded that there is no increase in 
torsional stiffness due to pretwist. Subsequently, Rosen [15], 
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following a procedure similar to that of [8], considered 
warping explicitly and showed an increase in torsional stiff
ness due to pretwist, which is slightly different from that 
calculated by using Wagner's hypothesis. Thus, it is necessary 
to use Wagner's hypothesis or to consider warping explicitly 
to account properly for the increase in torsional stiffness due 
to pretwist. 

An additional increase in torsional stiffness that is ex
clusively due to warping was considered in references [10, 12, 
16]. This increase in stiffness was quantified in [16] but with 
an inconsistent set of boundary conditions. Hence, there is a 
need to further examine the increase in stiffness. 

Warping also introduces several additional terms [12] in the 
torsional equation of motion and in the associated boundary 
conditions. One is an inertial term and the other is associated 
with rotation. These will be discussed further in later sections. 
The effects of these terms on torsional frequencies has ap
parently not been previously studied by researchers for low-
aspect-ratio blades. 

The effects of nonlinear twist and axial tension on torsional 
vibrations by retaining up to third-degree terms in the 
equations of motion were first addressed in [3, 17, 18] among 
several others. More recently, similar effects on steady state 
deflections were investigated in [19] for a special case of a 
large-aspect-ratio twisted beam, and the results reconfirmed 
the previously published findings that the nonlinear effects 
are important under certain conditions. These effects also 
were investigated in [20] by using more general forms for 
displacements. 

It is evident from the published literature that the torsional 
vibration of twisted rotating blades has received considerable 
attention. However, there still remain some unanswered 
questions. These include: (1) What are the limiting values of 
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aspect ratio, thickness ratio, and pretwist angle for which 
Wagner's hypothesis is applicable? Specifically, is Wagner's 
hypothesis appropriate to derive the equations of motion for 
vibration of twisted rotating beams that are employed to 
model turbofan, turboprop, and compressor blades? (2) What 
are the values of aspect ratio and thickness ratio beyond 
which the warping of the cross sections should be considered? 
(3) What is the effect of inertial warping on torsional 
frequencies? (4) How do the torsional mode shapes change 
with the inclusion of the warping in both the differential 
equations and boundary conditions? (5) Is it possible to 
obtain closed-form solutions for the torsional frequencies and 
mode shapes, at least for special nonrotating cases with 
warping and pretwist included? To answer these questions, 
two sets of equations of motion and the required boundary 
conditions for vibration of a pretwisted beam are derived 
systematically by using both Wagner's hypothesis and 
Washizu's theory. The differences between the two sets are 
brought out and discussed. The equations for certain special 
cases are solved in a closed form to quantify the effects of 
warping and pretwist on nonrotating torsional frequencies. 
The general equations for the rotating beam are then solved 
by the Galerkin method. 

Equations of Motion 

Wagner's hypothesis assumes that the pretwisted beam 
consists of helical fibers in the undeformed state. When the 
beam is twisted, the spiral becomes longer if the elastic twist is 
in the same direction as the pretwist and shorter in the op
posite case. Elongation of the fiber causes tension. This 
tension is mostly longitudinal but has a small component 
directed tangentially in the plane of a cross section. These 
tangential components produce a torque [3], which must be 
added to the Saint Venant's torque caused by shear force. 
Alternatively, this additional torque can also be obtained by 
considering the stress along the twisted fiber while deriving 
the equations of motion [10-13]. This latter approach will be 
considered first. 

The equations of motion and the associated boundary 
conditions will be derived by using Hamilton's principle in the 
form 

(bTk-bU)dt = Q (1) 

where the strain energy [/and the kinetic energy Tk are 

u=\\X\[E^+G{^+^)]dxdydz 

r i f t \P
d-^.d±dxdydz 

2 Jo Jx J dt dt 

> (2) 

where E, G, p, and L are Young's modulus, shear modulus, 
material density, and blade length, respectively. The ex
pressions for the strain components, yyy, yn, and yyx, and for 
the position vector rx will be defined later. 

A schematic of the coordinate systems is shown in Fig. 1. 
The pretwist angle, £ ( / ) , varies with y, the blade axial 
coordinate. Then, the curvatures of the undeformed and 
deformed elastic axes follow from [12, 13] and are 

aXyZ=eyk' (3) 

"yyizi 
= e ( £ ' - « ' ) (4) 

where the prime represent derivatives with respect y. Also the 
relation between the unit vector triads of the xyz and X3.V3Z3 
systems follow from [12, 13] and are 

Fig. 1 Blade coordinate systems 

eXi =ex(l- y j - f e . o 

ey-i ~ey 

eZi = -exa + ez(\- y j 

- (5) 

where a is the elastic twist angle. The position vectors of an 
arbitrary point on the blade before and after deformation are 

f0=R0 + exx + ezz (6) 

r, =R, +ex.x+ev.\a' +ez,z (7) x y . . i . > 3 . « * , ^ 3 

where R0 and Rx are the position vectors of a point on the 
elastic axis before and after deformation and the warping 
function A is assumed to be an antisymmetric function of x 
and z only. The angular velocity vector is 

> = Q(ex cos ^ + ez sin £j (8) 

where 0 is the rotational speed. Then the Green's strain 
tensor, e,j, based on a Lagrangian description can be obtained 
from 

Cdx 
(9) drx -drx -dr 0 ' d r 0 = 2[dx dy dz] [eyj J dy 

Substituting equations (6) and (7) into equation (9), one 
obtains the required strain components 

(10a) 

(10*) 

eyy -= v' + \a " + 

2eyx = 

2hz = 

j-2 _|__^2 

—^— ( a ' 2 - 2 a ' n + H 

-{z-^y+H.o.T. 

( * + — ) « ' + H . O . T . (10c) 

where v is axial deflection. The other components involve 
higher-order terms and are neglected. 

It is convenient to eliminate the axial equation of motion. 
This is done by explicitly considering the foreshortening due 
to torsion. The expression for foreshortening is obtained by 
making use of the force equilibrium condition in the axial 
direction, i.e., the integral of the fiber stress over the cross 
section must be equal to the total tension. Thus, 

?\ \eyydx dz=EA\v' + — ( a ' 2 -
2 -2aT)] (11) 

where 
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LI \dxdz = 0 J = UK--! ) ' • ( * •£)>* 
A = ^A^dxdz\ AkA = \A \(x2+z2)dxdz (12) c , = j j x 2 fife fife 

From equation (11), one can write 

k\ 
{a'2-2a'^)=v'e-U'F 

EA 2 

where the expression for shoreshortening is 

(13) 
Bx = 

Ak\ 

Up=\ \[k2
A(a'2-2a'i')dy (14) 

By assuming that the beam is rigid {EA — oo) in the axial 
direction, the expressions for strain components, equation 
(10), simplify to 

tyy = X« " ' 

(z2+x2-k2
A) 

( a ' 2 - 2 a ' £ ' ) 

ax / d\ \ ( ax \ 

(15a) 

(15ft) 

f.2 —)A 4 -^2 

1*5., = J^ \PZ2 dxdz 

nkl2 = j ^ ]px2 dxdz 

f (21) 

mArt = JPX2 
dx efe 

Notice that the component eyy is the strain along the twisted 
fiber. This strain will be used to account for the increase in 
torsional stiffness due to centrifugal loads and to pretwist. 
Then, the required engineering components of strain in 
equation (2) are 

lyy = Zyy\ yyx = 2eyx'> y?z =2Cyz (16) 

Also the expression for Ri is 

R1=(y + v)ey=(y-UF)ey (17) 

Substituting equations (5) and (17) into equation (7), yields 

Tc = mQ2y dy 

m = \mpdxdz 

ri=(y-UF + \a')ey + X ( X - \ ) - Z a \ 

+ z(l~i:)+x°\6* (18) 

Substituting equations (8), (14), (16), and (18) into equation 
(2) and the result into equation (1), taking the indicated 
variations, integrating over the blade, and integrating over 
time, yields the following equation of motion after neglecting 
some higher-order and Coriolis terms 

(GJa')' + (EB^'2a') +(TckW) -(EC.a")" 

-mk2„a + mQ2 (k2„2 -k2„n )a cos 2 £+ (mk{a'J 

-(m&kia') =-{rck
2A') (19) 

and the following boundary conditions 

mQ2k{a' 8a + TckA (a' - £ ') 5 a - E C \ a" 8a' 

1 \L 

+ (ECla")'8a-EBl£'2a'8a-GJa'8a\\ =0 (20) 

where the dot denotes derivative with respect to time and the 
other quantities are 

The boundary conditions relevant to a beam built-in at y = 0 
and free at y = L are: the twisting angle and warping 
displacement (proportional to a ' ) must be zero at the root, 
and the torque and warping stress (proportional to a") must 
be zero at the free end. See also the discussion on these 
boundary conditions by Barr in [16], Then, equation (20) 
reduces to 

a(0) = a'(0) = a " (Z , )=0 

mU2k{a' (L) + \ECia" (L) l 

-EB^'2a' (L) -GJa' (L) = 0 

(22) 

As mentioned earlier, the equation of motion can also be 
derived by using the theory presented in [8]. This theory 
requires that the expressions for stresses and strains be written 
in the local Cartesian reference system, rather than in the 
curvilinear coordinate system. Let the Cartesian system be x, , 
>>!, and Z\, and the corresponding strain components be ey y , 
ey x , eyiZ . Washizu [8] derived the transformation between 
these Cartesian components and the Green strain components 
given in equation (10). By using those transformations, the 
expressions for the required Cartesian components are 

ey\yi =V +\a" + • •--(: 
ax ax 
dx dx )«'€' 

"^l*! 
= -(Z~lt)a 

" ^ l * ! \x+Hz-h 

r (23) 
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By using the preceding expressions for strain components 
instead of those given by equations (10a)-(10c) and by using 
Hamilton's principle again for deriving the equation of 
motion, one obtains the following equation of motion: 

(GJa')' + [E(Bn-k\AA)ti'2<x'] 

+ {rck
2
Aoi'\ - (EC, a" ) " -mk2

m a 

+ m£l2\k2m2 ~k1„x J a cos 2 £ + (mkia')' 

-{mQ2kia') = - ( r c * ^ ' ) (24) 

and the boundary conditions: 

a(0) = a'(0) = a " (Z , )=0 

m&kia' (L) + \ECia" (L)\ -E(BU - k\AA\ £ ' 2 a ' (L) 

-GJa'(L)=0 

where 

Ak\A 

(25) 

z— x-—- ) dx dz 

(26) 
r r / ax 9X \ 2 , J 

B\\ = \ \(z— x—- ) dx dz 
" }A J V dx dz / 

The form of equations (24) and (25) is the same as that of 
equations (19) and (22) with the exception of the two un
derlined coefficients. 

To examine the differences between the two sets of 
equations a thin rectangular beam is considered. The warping 
function for the sections can be approximated as 

X= -xz (27) 

Then, 
Bl = L i (*2 + z 2 ) dX dz~kA L i (*2 +z2)dx dz 

Bn-AkAA = [ Uxi-z2) dxdz 

-k2
AA[ \(x2-z2)dxdz 

Ak2
A = [ Ux2+z2)dxdz 

Ak2
AA = [ Ux2-z2)dxdz 

(28) 
If the cross section is thin, (tic)2 « 1, one can show that 

Bx ~Bn -AkAA 

h-2 _ h-2 KA ~KAA 

(29) 

and, hence, the equations of motion and boundary conditions 
obtained from these two methods are identical. This clearly 
validates the applicability of the Wagner's hypothesis for 
twisted, rotating, slender beams with thin cross sections. 
Furthermore, this hypothesis is independent of aspect ratio. 

Special Cases of Equations 

It is of interest to specialize equations (18) and (22) and 

compare the resulting equations with the corresponding ones 
in the published literature. Two such cases are considered: 

Case / : Q = kx = 0 (rotation and inertial warping are 
zero) 

(GJa')' + (EB^'2a'^ - (ECxa" ) " -mk2„,a = 0 (30) 

a(0) = a:'(0) = a " ( Z , ) = 0 

[£C,a"(L)] -EB^'2a' (L) -GJa" (L) =0 

(31) 

The differential equation (30) is the same as that derived in 
[16]. However, there are some differences in boundary 
conditions. For discussions of these differences, see the 
discussion at the end of [16]. 

Case / / : Cx = kx = 0 (warping constants are zero) 

(GJa')' + ^EB^'2a'^ + (rck
2
Aa') + mk2

m a 

+ mil2 (kl2 - k2
mi) a cos 2 £ = 0 (32) 

a(0) = a ' ( L ) = 0 (33) 

Equations (32) and (33) are the same as the corresponding 
ones in [3, 9, 12, 13]. 

It is also of interest to specialize equations (24) and (25) and 
to compare the resulting equations with the corresponding 
ones in the published literature. The form of the second term 
on the left-hand side of equation (24) was examined in [15] by 
using the theory of [8]. This represents an increase in torsional 
stiffness due to pretwist. The present term is in agreement 
with that presented in [15]. 

The term on the right-hand side of equation (24) represents 
a torsion moment due to pretwist. This is similar to the second 
term on the left-hand side of equation (24), but is independent 
of elastic twist. Hence, it is not a stiffness term. The effect of 
the term is to cause a steady untwist of the pretwisted beam 
under centrifugal loading. The form of this term was 
examined in [21] by using the theory of [8]. The present term 
is in agreement with that given in [21]. 

Results and Discussions 

To quantify the effects of the individual terms on vibration 
frequencies, uniform nonrotating and rotating beams are 
considered separately. Since the effects of some individual 
terms were studied in a piecewise manner in the published 
literature all these results are not entirely new. In the 
following section, an attempt is made to present the effects of 
these terms in a unified manner. The present results are 
compared with the previous results wherever possible. 

Nonrotating Beam. The equation of motion and the 
boundary conditions for the nonrotating beam case follow 
from equations (19) and (22) and are: 

GJa" +EB^'2a" -EC]a
!v-mk2

m&-mk{a" = 0 (34) 

a(0) = cx'(0) = a " (Z , )=0 

ECXOL"' (L) -EB^'2a' (L) -GJa' (L) = 0 
(35) 

The special case of these equations without the inertial 
warping terms and pretwist terms were solved in [22]. 

The sectional properties for a rectangle of chord c and 
thickness / are 
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X= —xz 

Etcs 

EB 
180 

m = ptc 

k\ = 

Defining 

GJ--

EC, = 

Grt3 

^ 3 ~ 

Ec3t3 

144 

12 

*3 = 

>? = 

12 

(36) 

and assuming simple harmonic motion in the form 

equations (34) and (35) can be written as 

(38) 

<pIV-A2<p" -B<p = 0 (39) 

(40) 

where 

24 /L\2 4 c2 . B I t \ -

P L" 2 

E r 

A,= 
24 /L\2 4 c2 , 

(- + 1 + v V c / 5 t2 

(41) 

(37) The solution to equation (39) subject to the boundary con
ditions, equation (40) is 

<p(fj) =DX (sinh kifj — sin Ar2j/J 

/r2sinh kx +k{k2 sin k2 Arfsinh ki +kxk2 sin k2 1 

k\ cosh kl+kl cos k2
 ( C ° S h * ' ' - C 0 S ^ ^ J ( 4 2 ) 

Table 1 Nonrotating beam torsional frequencies 

[t/c = 0.05] 

L/c Mode Pretwist 

Odeg 15deg 30deg 45 deg 

UNRn / " o 

Table 2 Nonrotating beam torsional frequencies 

[t/c = 0.20] 

60 deg 

2 

4 

6 

8 

10 

n 

n 

n 

n-

n-

= 1 
2 
3 

= 1 
2 
3 

= 1 
2 
3 

= 1 
2 
3 

= 1 
2 
3 

1.1443 
1.2436 
1.4281 

1.0656 
1.0959 
1.1536 

1.0421 
1.0562 
1.0838 

1.0310 
1.0391 
1.0550 

1.0245 
1.0297 
1.0400 

1.2785 
1.3704 
1.5408 

1.1014 
1.1307 
1.1868 

1.0582 
1.0721 
1.0993 

1.0401 
1.0481 
1.0639 

1.0303 
1.0355 
1.0458 

1.6099 
1.6869 
1.8309 

1.2018 
1.2289 
1.2811 

1.1050 
1.1184 
1.1444 

1.0669 
1.0747 
1.0901 

1.0476 
1.0527 
1.0628 

2.0565 
2.1190 
2.2378 

1.3586 
1.3828 
1.4296 

1.1821 
1.1946 
1.2191 

1.1121 
1.1195 
1.1344 

1.0771 
1.0821 
1.0919 

2.5325 
2.5841 
2.6838 

1.5446 
1.5660 
1.6077 

1.2788 
1.2903 
1.3131 

1.1703 
1.1774 
1.1915 

1.1158 
1.1205 
1.1301 

L/c Mode Pretwist 

Odeg 15 deg 30 deg 45 deg 

°>NRn l^o 

60 deg 

2 

4 

6 

8 

10 

n 

n 

n 

n 

n-

= 1 
2 
3 

= 1 
2 
3 

= 1 
2 
3 

= 1 
2 
3 

= 1 
2 
3 

1.1443 
1.2436 
1.4281 

1.0656 
1.0959 
1.1536 

1.0421 
1.0562 
1.0838 

1.0310 
1.0391 
1.0550 

1.0245 
1.0297 
1.0400 

1.1532 
1.2520 
1.4354 

1.0679 
1.0981 
1.1557 

1.0431 
1.0572 
1.0847 

1.0315 
1.0396 
1.0555 

1.0248 
1.0301 
1.0404 

1.1795 
1.2767 
1.4573 

1.0747 
1.1047 
1.1620 

1.0462 
1.0602 
1.0876 

1.0333 
1.0413 
1.0572 

1.0259 
1.0312 
1.0415 

1.2237 
1.3186 
1.4944 

1.0864 
1.1161 
1.1729 

1.0515 
1.0654 
1.0927 

1.0362 
1.0443 
1.0601 

1.0279 
1.0331 
1.0434 

1.2810 
1.3727 
1.5429 

1.1020 
1.1314 
1.1875 

1.0585 
1.0724 
1.0995 

1.0402 
1.0483 
1.0640 

1.0304 
1.0356 
1.0459 
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where 
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n d d d o 

© -H t-- v> NO 
O ONVO fS NO 

S ON ON O N oo 
ON O N O N ON 

-H o d d d 

O t— r - *-H ON 
O O t N V O O 
O O O O -H 
O O O O O 

o o o o r- ON 
O O m NO »-H 
O O O O ^H 
O O O O O 

o O O N OO r-o -H m oo «n 
O O O O --< 
O O O O O 

O *0 (N ON <O 
t-» v i (N o 
<N <n oo .—i 

2 a 

.§•-

II II 

* - [ ( T I + " ) T + T ' ] 
(43) 

The frequencies are obtained by solving the following 
transcendental equation: 

Aj-AlA2+2B + {2B+AlA2)cos k2 cosh kx 

+ (24, -A2)JB sin £2 sinh A:, =0 (44) 

The nondimensional frequencies wml /o>0i, aNR2/o>02, 
oiNR3/wm for the first three torsional modes of several blade 
configurations are tabulated in Tables 1 and 2. The reference 
frequency to0„ for the nth mode is obtained from the Saint 
Venant's theory of torsion and is 

nir t G 
<>>on= -j •%/ ("'-

L c y p 
1,3,5, . . .) (45) 

Results in Table 1 are for low-thickness-ratio {tie = 0.05) 
blades having aspect ratios {Lie) varying from 2-10, and 
pretwist angles varying from 0-60 deg. Results in Table 2 are 
for high-thickness-ratio {tic = 0.2) blades. With the help of 
these results, the effects of individual terms can be assessed. 

Inertial Warping. The last term in equation (34) is the 
inertial warping term. When this term is set to zero, the 
coefficients A, and A2 in equations (40), (41), (43), and (44) 
will be equal. To assess the significance of this term, equation 
(44) was solved for Ax = A2 and for At & A2. Comparison 
of the results, although not shown, revealed that the inertial 
warping term has a negligible effect on frequency. Thus, this 
term can be neglected in the formulation and will not be 
discussed further. 

Elastic Warping. This is reflected as the third term in the 
differential equation (34) and as the first term of the last 
boundary condition, equation (35). To illustrate the effect of 
the elastic warping, let us consider the results for zero pretwist 
angle in Tables 1 and 2. Since the inertial warping terms have 
negligible effect and since the pretwist angle is set to zero, the 
value listed is simply the ratio of the frequencies with and 
without these terms in equations (34) and (35). Obviously, 
these terms increase the frequency in all three modes. For Lie 
= 2 and for both tic = 0.05 and 0.2, the increase is ap
proximately 15, 25, and 45 percent for the first, second, and 
third modes, respectively. For large-aspect ratio, the effect is 
smaller. 

Pretwist. This is reflected as the second term in the dif
ferential equation (34) and also as the second term of the last 
boundary condition, equation (35). These two terms increase 
the effective torsional stiffness and hence the frequencies for 
all the modes. For example, from Tables 1 and 2, for a 
pretwist angle of 30 deg and Lie = 2, the increase is 30-40 
percent for tic = 0.05 and is 2-3 percent for tic = 0.2. This 
increase is with respect to the untwisted value that includes the 
EC-ia

,v term. Again for large-aspect ratios, the effect is 
smaller. 

The preceding quantitative observations suggest that for 
low-aspect-ratio blades, which are used for turbofans and 
compressors, the elastic warping and pretwist terms should be 
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included in the formulations. Since the torsional frequencies 
and mode shapes are very important in aeroelastic analysis by 
using the modal approach, the hyperbolic mode shapes given 
in equation (42) should be used rather than the usual 
sinusoidal mode shapes for representing torsional deflections. 

The effects of one of the elastic warping terms on torsional 
frequency was studied for certain blade configurations in [23] 
by using the Raleigh-Ritz method. The same configurations 
were analyzed by using the present closed-form approach and 
very good agreement was found between the two sets of 
results. 

Rotating Beam. The equations of motion and boundary 
conditions for a rotating beam are given by equations (19) and 
(22). For a free-vibration analysis, the term on the right-hand 
side of equation (19) is set to zero. These equations are solved 
by using Galerkin's method [3] in conjunction with the mode 
shapes given by equation (42). A total of five modes are used 
in this analysis. 

To illustrate the effect of the tension-torsion coupling term 
( r ^ a ' ) ' and the "tennis-racket" effect term, mtl2 {k,„2 -
k2„^) a cos 2 £, the first three torsional frequencies are 
calculated with and without these terms at different rotational 
speeds. The variational of nondimensional frequencies 
IORI/O)NRU o>R2/uNR2, toRi/wNRi with rotational speed for two 
blade configurations, (Lie = 3 and tic = 0.05; Lie = 6 and 
tic = 0.2) is shown in Tables 3 and 4. 

The first configuration is a low-aspect-ratio thin blade, 
which approximately represents a compressor blade and the 
second one is a large-aspect-ratio thick blade, which ap
proximately represents a propeller blade. The results show 
that the tension-torsion coupling term, which is a centrifugal 
stiffening term, causes an increase in torsional frequency with 
rotation of approximately 0-5 percent and that the tennis-
racket term, which is a centrifugal softening term, causes a 
decrease in torsional frequency with rotation of ap
proximately 0-5 percent for a low-aspect-ratio thin blade. The 
same is true for high-aspect-ratio thick blades but the per
centage increase in torsional frequency is lower. The net effect 
of rotation is to very slightly increase the torsional frequency 
with rotation. This is in contrast to the strong stiffening effect 
of rotation observed on the out-of-plane bending frequencies. 
The presence of both the centrifugal softening and stiffening 
terms and their net effect on torsional frequencies are similar 
to the presence of corresponding terms and their effect on the 
bending frequencies in the plane of rotation of a rotating 
beam. The tension-torsion term is very important for blades 
that have low torsional stiffness. The tension-torsion term is 
independent of the blade twist angle but the tennis-racket term 
is a function of twist angle. These quantitative results further 
show that it is always safer to retain both terms in the torsion 
equation. 

Conclusions 

The governing equations of motion and the associated 
boundary conditions for torsional vibration of a beam in
cluding pretwist, warping, and rotation are derived by using 
both Wagner's hypothesis and Washizu's theory. These 
equations are solved for special cases. The results are 
presented in a unified manner to illustrate the effect of each 
term on torsional frequency. Based on the derivation and the 
results, the following conclusions are drawn. 

1. The application of Wagner's hypothesis is valid in 
deriving the equations of motion for pretwisted, rotating, 
slender beams with thin cross sections. 

2. The torsional vibration frequencies of a nonrotating 
uniform beam including pretwist and elastic and inertial 

warping terms are presented in a closed form for the first time 
in published literature. 

3. The warping term ECxa.'v has a significant effect on 
torsional frequency, and its effect is more significant for low-
aspect-ratio blades than for high-apsect-ratio blades. The 
presence of this term introduces hyperbolic functions in 
addition to trigonometric functions in the vibration mode 
shapes. Thus, this warping term should be included in 
calculating torsional frequencies and flutter of tur-
bomachinery blades using beam models. 

4. The inertial warping term has a negligible effect. 

5. The pretwist term, EBx£'2ct", also increases the 
torsional frequency, and this increase is more significant for 
low-aspect-ratio thin blades than for high-aspect ratio thick 
blades. 

6. The tension-torsion coupling term (T^/c^a ') ' is a 
centrifugal stiffening term and increases the torsional 
frequency approximately 5 percent at a rotational speed of 
1100 rad/sec. The effect of this term is more significant for 
blades that have low nonrotating torsional frequencies. 

7. The "tennis-racket" term is a centrifugal softening 
term and decreases the torsional frequency approximately 5 
percent at a rotational speed of 1100 rad/sec. 
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Exact Displacement Analysis of 
Four-Link Spatial Mechanisms by 
the Direction Cosine Matrix 
Method 
A method of displacement analysis of the four-link spatial mechanism is developed. 
The results through this analysis will be exact solutions that can be obtained without 
resorting to numerical or iteration schemes. In the analysis, the position of a link in 
a mechanism can be fully defined if its direction and length are known. Therefore, 
this analysis involves the calculation of the unknown direction cosines and length of 
each link for a given configuration of the mechanism. In finding the direction 
cosines of the unknown unit vectors involved for each link and rotating axis, two 
types of coordinates, the global and the local, are generally used. Then, a direction 
cosine matrix between each local coordinate system and the global coordinates is 
established. Thus, the unknown direction cosines of the local coordinates, the links, 
and the rotating axes are obtained in global coordinates. In this development, 
direction cosine matrices are used throughout the analysis. As an illustration, the 
application of this method to the study of four-link spatial mechanisms, RGGR, 
RCCR, RRGG, and RRGC will be presented. 

Introduction 

A recent survey of space mechanism research [1], which 
covers analytical methods developed mainly since the 1950s 
with numerous pertinent references, serves as an extensive and 
informative source of background material. However, several 
selective references of well-known methods for the 
displacement analysis of spatial linkage may be mentioned. 
Among them are the 4x4 matrix iterative method [2, 3], the 
dual number quarternion method [4, 5], the geometric 
transformation method [6, 7], the vector method [8-10], the 
screw method [11-15], the tensor method [16], the line 
geometric method [17], and the geometrical configuration 
method [18], etc. Most of these methods involve high level 
mathematics of complicated mathematical manipulation, and 
all require numerical or iterative schemes for solutions. 

A method of displacement analysis using direction cosine 
matrices as transformation matrices for the four-link spatial 
mechanisms is developed and applied to various four-bar 
spatial linkages in this paper. The mathematics involved are 
elementary; the operations are simple without loss of 
geometric interpretation, and the solutions are exact. The 
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analysis starts by choosing an appropriate local coordinate 
system and assigns direction cosines to the related unit vec
tors. These direction cosines in the local coordinates are 
obtained by applying the dot product of unit vectors and using 
given angle data. Then, a direction cosine matrix between the 
global and the local coordinates is obtained, by using known 
unit vectors, the direction cosines of the local coordinates, 
and a special property of the direction cosine matrix. Using 
this special property of the direction cosine matrix, that is, 
that each element of the matrix equals its own cofactor, we 
obtain exact analytical solutions without resorting to 
numerical or iterative schemes. When the direction cosine 
matrix is known, the unknown unit vectors in the global 
coordinates can be fully calculated. 

Analytical solutions in closed-form, input-output relations 
for a few spatial four-bar linkages are obtained in [4, 6, 7]. In 
[6, 7], the rotation matrix is used, together with one or two 
constraints particular to the linkage concerned. However, the 
solutions for these closed-form, input-output relations will 
have to be obtained by numerically solving transcendental 
equations. In the present paper, the direction cosine matrices 
are used in successive steps of the analysis, from the input end 
to the output end of the linkage mechanism. In the process, 
the constraints of the mechanism, such as the constant length 
of a link or the constant angle between two links, are taken 
care of automatically. The solutions are obtained without 
resorting to numerical or iteration schemes. It should be 
mentioned that, for a simple case of the 2R-2G mechanism, 
the input-output relation, developed in [20], can be reduced to 
a closed-form solution. 
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Fig. 1 A RGGR four-link spatial mechanism 

A 

Fig. 2 The schematic diagram of a RGGR mechanism 

In this paper, this direction cosine matrix method will be 
applied to obtain analytical solutions for the four-bar spatial 
linkages, an RGGR, an RGCR, an RRGG, and an RRGC, 
with numerical illustration. 

1 Displacement Analysis of the RGGR Mechanism 

The RGGR four-link spatial mechanism as shown in Fig. 1 
is a generalization of the planar four-bar mechanism RRRR. 
It is one of the most versatile and practical configurations of 
three-dimensional mechanisms and will function as a single 
degree of freedom linkage with a passive degree of freedom in 
the connecting link. A schematic diagram of an RGGR 
mechanism is shown in Fig. 2. 

The known quantities of the mechanism are the lengths, l{, 
l2, hiUi the vector /4, the directions of rotations, px, p2, the 
angles f, rj, a, /?, from the construction of mechanism, and the 
input angle 0. The unknown quantities are /,, 12, and /3. 

(a) Input Angle 6. The input angle 6 for the rotation 
about the j^-axis can be measured with any arbitrary 
reference. As shown in Fig. 3, 8 is_chosen as the angle between 
the two planes formed by px and /4, and/5] and tt in which the 
pj4-j>lane chosen as a reference. Both the angle f betweenP! 
and It, and the angle -q between/?! and l4 are chosen to be less 
than T. 

Let the local coordinates X\, y{, Z\ associated with px with 
the origin at 0 be chosen as follows: 

The x,-axis is set along the known rotating axis pt and has 
the same positive direction as p \. 

P{ (1 ,0 ,0 ) 
Vara

2°> 

Fig. 3 A local coordinate system and input angle measurement 

The >>k-axis is set in the plane of px and /4 and the angle 
between /4 and the .y-axis is less than r/2. 

The Z[ -axis follows the right-hand rule. 

With this local coordinate system the input angle 6 can now be 
measured between the xtyi -plane and the A^/, -plane with the 
xxy\ -plane as references. 

(ft) Analysis of / l v The direction cosines of the unit 
vectors pu / , , and /4 in the local coordinates system 
associated with J3J are expressed in the parenthesis for each 
unit vector as Pi(l, 0, 0), 1{ (cosf, sinf cos0, sinf sin0), and 
lA(a{, «2, 0),^respectively. 

To find /] in global coordinates, the direction cosine 
transformation matrix [Ty] should be defined. With/?! and /4 

known in global coordinates we have 

(Plx.Pi_(,,j5ijSobal=t7,,y]i (1,0,0) 
L-G 

(1) 

from which 

( ^ I O I =Pix, (^21)1 =P\y, ( 7M) I =PU (2) 
L — G underneath [Ty-h indicates transformation from local 
to global coordinates. From now on the subscripts global, 
local, and L ^ G will be omitted for simplicity. Similarly, 

04xJ*y,k)T = lTohlai,ai,0}T (3) 

in which 

a[ = U'P\ =COSTJ 

:=VT 

(4) 

(5) a2 = v i -(«{) =sinrj 

where positive sign is taken for the square root as a result of 
construction of the local coordinate system. Thus 

lUxAyAzlT=lT„h [cos7,,sim),0}T (6) 

or 
/4x=(7'ii)iCosr/+(r12)1sinij 

hy- (r21)!Cosr;+ (r22),sini7 

hz = (T31) 1 cos»j + (T i 2)! sin?/ 

Solving ( r 1 2 ) , , ( r 2 2 ) , , and (r 3 2) , gives 

(^12)1 =(Ux-PixCosri)/smri 

(^22)1 = (Uy -Piycosri/sinri 

(T32)\ =(?4Z-Pizcosii)/smTi 

Now (T13)i, (723)1, anc> (733)1 can be found as their cofac 
tors. Thus 

(7) 

(8) 
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*>. 

(̂b„b2p) / / ^ v * 1 

>B 

§,(0,1,0) 

Fig. 4 A local coordinate system and links l2 and /3 

( T ' B ) ! = (PlyUz-PlzUyVsimi 

(^23)1 = - (PuUz-PizUjcV&iny 

(^33)1 = (PlxUy-PlyUxVsmr] (9) 

PuSinij 
Pi^sinij 
phsmri 

Ijx -PI^COSJJ 

'fe-PizCOSr; 

Pjylflz ~PjzL*y 
P\zUx~P\xUz 
Plx'4y ~P[yUx 

Therefore 

1 

sinrj 

Now 7, in global coordinates can be found as 

IhxJiyJiz)T = [Tuh (cosf, sinf cos0, sinf sin0)T 

(c) Analysis of l3. Let vector c be defined such that it 
forms a closed loop with vectors 72 and 73 as shown in Fig. 4. 
It also forms a closed loop with vectors lx and 74. From the 
figure 

c = I{-U and c = c/lcl (12) 

A local coordinate system with the origin at joint C is set such 
that the y2-axis is along the known vector p2 as shown in Fig. 
4. The A:2-axis is in the plane that consists of known vectors c 
and p2, perpendicular to the y2-axis and the angle between c 
and x2-axis is less than 7r/2. The z-axis will follow the right-
hand rule. The direction cosines of the unit vectors p2, c, and 
/3 in the local coordinate system are expressed in the 
parenthesis for each unit vector a s p 2 (0, 1> 0), c (blt b2, 0), 
and 73 (a,, a2, o3), respectively. 

The unknown direction cosines in the local coordinate 
system will be found by applying the dot product of unit 
vectors and using the known angles from its design. The 
direction cosine b2 can be obtained from unit vectors p2 and c 
and the known angle 7 as follows. 

(13) 

Pi ' c =Pixcx +p2yCy +P2z^z m global coordinates 

= cos7 

= b2 in local coordinates 

from which 

6 2 =cos7 (14) 

where the angle 7 between p2 and c is taken to be less than w. 
Therefore 

(15) 

where the positive sign is taken for the square root as a result 
of construction of the local coordinate system. 

The direction cosines alt a2, and a3 of unit vector 73 can be 
obtained as follows. From the dot product of 73 and/52, and 73 

and c we have 

h'P2= - « 2 = c o s a 

-l-s'C = -a\b\ -a2b2 = cos8 

(16) 

(17) 

where the known angle a between p2 and - / 3 , and the 
unknown angle 8 between c and - 73 are chosen to be less than 
•w. By applying the cosine law to AABC 

cos8={l2+c2-l2
2)/213c (18) 

Therefore 

a 1 = - (cos5 + a2b2)/bi (19) 

in which bu b2, a2, and cosS, have been just defined in 
equations (14)-(16), and (18). The direction cosine «3 can now 
be calculated as 

a3 = ±-J\-a\-a\ (20) 

The positive and negative signs of a3 correspond to two 
possible positions of joint B for the given problem. If 1 - a ? 
- a2 = 0, then the mechanism is not working. 

Summarizing, we have 

bx=smy a, = - ( c o s 5 —cosa coS7)/sin7 

b2=zo%y a2= — cosa 

a3 = ±Vl -a2 —a\ (21) 

The transformation matrix from local to global coordinates 
can now be determined as follows. As 

lP2x,P2y,P2z)T=[TUh f 0,1,0) T 

) and 

{cx,cy,cz)
T = {Tij]2 lbl,b2,0)T 

. from which 

( r 1 2 ) 2 =p2x,(T22)2 =p2y,{Ti2)2 =P2Z 

(22) 

(23) 

(24) 

and 

(Tu)2 = [cx-{Tn)2b2]/b1 

(T2l)2 = [cy-(T22)2b2]/b1 (25) 

{T3l)2 = [cz-(T32)2b2]/bl 

Since each element in a direction cosine matrix is equal to 
its own cofactor, therefore 

(^13)2 = (T2i)2(T32)2
 — (T22)2(T3X)2 

(T23)2 = (Tl2UT3])2-(Tn)2(T32)2 (26) 

(^33)2 = C i 1)2(^22)2 ~~ (T\2)2(T2i)2 

The resulting transformation matrix is 

[Tijh = 
1 

sin7 

Cx -p^cosy 
Cy —Ply^OSy 
cz~p2zcosy 

PixSmy 
PiySiny 
p2zsin7 

Plzcy~ P2ycz 
P2xcz ~P}zcx 
Plycx ~P2xcy -

(27) 

Now the unit vector /3 in global coordinates can be obtained 
from 

ihx'hyhz) 
and the vector 73 is 

Note that 

if a + /3>7, /3 

if a + j3 = y, /3 

= [Tu]2{al,a2,a3}
T 

73=/373 

has two positions 

has one position 

(28) 

(29) 

bx =Vl -b2=smy if a + /3<7, it is an impossible case 
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f4<a>"2, 0) 

^(1,0,0) 

Fig. 5 A local coordinate system and output angle measurement 

(d) Analysis of /2. Let us consider the equation 

/2 + / 3 + c = 0 (30) 

or its scalar form 

hhx + hhx+ccx = 0 

llhy + hhy+CCy=0 (31) 

hhz+h hz + cCz=Q 

From these equations the components of unit vector l2 can be 
solved as 

(32) 

(33) 

Therefore 

lix^-Vihx+cc^/h 
hy=-(hhy+ccy)/l1 

h=-(hhz+ccz)'h 

12 —I ill 

(c) Output Angle <j>. The output angle 4> for the rotation 
about the p2-axis can be measured with any arbitrary 
reference. As shown in Fig. 5, </> is chosen as the angle between 
the two planes formed byp2 and /4, andp2 and /3, and p2l4 

plane is chosen as a reference. Both the angle a between p2 

and - l3 and the angle /3 between p2 and - /4 are chosen to be 
less than -K and they are known angles from the mechanism. 

Let the local coordinates x3, y3, and z3 with the origin at C 
be chosen as follows: 

x3-axis is along the known rotating axisp2 and has the same 
positive direction as p2. 

.y3-axisisinthepIaneof/52 and/4 and the angle between 
- /4 and thej-axis is less than ir/2. 

z3-axis follows the right-hand rule. 

It is seen that the angle <j> can now be measured between x3y3 -
plane and x3/3-plane with x3y3-plane as reference. 

The direction cosines of the unit vectors p2,l3, and /4 in the 
local coordinate system are expressed in the parenthesis for 
each unit vector as p2 (1,0, 0), /3 ( - cosa , -sinacos</>, - s i n a 
sin</>), and (a'{, a2, 0), respectively. 

To find </>, the same procedure used to find /, will be 
followed. The transformation matrix [ r y ] 3 is obtained as 

1 
sin/3 

Therefore 

\.hx>hyhz J 

P^sin/3 
Piy sin/3 
Piz sin/3 

- lJx -P2*COS0 -Plyljz +PlzUy 
- lJy -PlyCOSQ ~P2zlJx +P-JJ; 
-Uz~P2zCOSl3 -PlxUy+PlyUx 2y'4x 

(34) 

(35) = — [T(j]3 (cosa, sina cos</>, sina sin</>) T 

This equation in l3 can be expanded into 

hx= - [ (7 , n) 3 cosa+ (r1 2)3sina cos</> 

+ (r1 3)3sina sin<£] 

l3y = - [ ( r 2 1 ) 3 cosa+ (r2 2)3sina cos0 

+ (^23)3sma sin</>] (36) 

l3z = — [(r3 1)3cosa+ (r3 2)3sina cos$ 

+ (r3 3)3sina sin</>] 

From any two of these three equations sin<£ and cos<£ can be 
solved. If the first two equations are chosen, we obtain 

sin<£ = 

[-(.T22hhx +(7*12)3?3v1 -l(Tu)3(r22)3 - ( T a h ( r 2 1 ) 3 ] c o s a 
l(Tl3h(T22)3-(Tn)3(T23)3)sma 

(37) 
COS0 

[-(T23hl3x-(Tu)3l3v]-[(Tu)3(T23)3-(Tl3)3(T2l)3]cOSa 

l(Tl2)3(T23)3-(Tl3)3(T22)3]sma 

These two equations can be simplified as 

(T22)3t3x- (Ti2)3l3y+ (T33)3cosa 
sin</> = 

(r3 1)3sina 

COS0 = - ( r23)3/3 y+(7 ,
13)3/3v+(7 ,32)3COSa 

(r3 1)3sina 

(38) 

(39) 

(40) 

From these two equations the angle 4> can be completely 
determined. 

2 Displacement Analysis of the RGCR Mechanism 

The RGCR four-link spatial mechanism whose schematic 
diagram is shown in Fig. 6 is similar to the RGGR mechanism 
except that one of the spherical joints is replaced by a 
cylindrical joint. 

The known data of the mechanism for the analysis are the 
lengths/!, 12, the vector /4, the directions of rotation of plt 

p2, the angles J", 77, a, /3, and the input angle 8. The unknown 
quantities are l\,J2, and /3. The angles, f between p t and ^ , r; 
between p t and /4, a between p2 and /3, and (3 between p2 and 
/4 are chosen to be less than ir and they are known angles from 
the construction of the mechanism. 

In the analysis, the only difference from the RGGR is the 
calculation of /3. The analysis of /3 is as follows. From Fig. 6, 

= /. —L and --cl\c\ 

By applying cosine law to AABC we obtain 

C 2 =/2+/2-2 / 2 / 3 COsV' 

(41) 

(42) 
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T 
c' 

1 

1 

*3 

• 

( a ) ^ S-JT/2 (b )^<7r /2 ,c '>c" (c)^<7r/2,c '<c" 

c ' = v c 2 - - £ 2 s i n 2 ^ c" = € 2 c o s ^ 

Fig. 7 Transmission angle and/3 

Fig. 6 The schematic diagram of a RGGR four-line spatial mechanism 
and its known data 

To solve /3 the preceding equation is rewritten as 

l\ - (2l2cosi) l3+(l2
2-c

2) = 0 

This gives 

(43) 

/3 =/2cost/'±Vc2 -l2sm24> (44) 

in which the rules of choice of positive and negative signs 
before the square root are as follows: 

(0 For \p > ir/2 positive sign only and there is only one 
solution. 

(if) For i//<ir/2 and Vc2 —/2sin2i^ > l2 cosi/-, positive sign 
only and there is only one solution. 

(Hi) For \[/<ir/2and /2 cos i/' > Vc2 - /2 sin \t, positive and "i 
negative signs correspond to two positions for two solutions Fig. 8 The schematic diagram of the RRGG mechanism and its known 
of/,. d a , a 

Figure 7 illustrates the choice of these rules. Also by applying 
the cosine law to AABC, we obtain 

cos5=(l2+c2-l2
2)/2l3c. (45) 

Now, the unknown unit vectors /3 can be obtained in the same 
manner as finding /3 in the RGGR mechanism by using the 
local coordinate system and their direction cosines of 
corresponding unit vectors. 

3 Displacement Analysis of the RRGG Mechanism 

The RRGG four-link spatial mechanism is a variation of 
the popular RGGR four-link spatial linkage. Each mechanism 
has a single degree of freedom, with a passive degree of 
freedom in the GG link. A schematic diagram of a RRGG 
mechanism is shown in Fig. 8. 

The known quantities of the mechanism are the lengths lx, 
/2, and /3, the vector 74, the direction of rotation px, the angles 
f, i), a, and (3 from the linkage design, and the input angle 8. 
The angle f, between j$! and/ i , and the angle ij, between p\ 
and /4, are chosen to be less than it. ^ 

Both the angle Oj between j52 and/2 , and the angle /3, 
between p2 and —l1, are also chosen to be less than IT. The 
unknown quantities are / j , /2, and /3. 

After calculating J{ by equation (11), p2 is determined by 
the direction cosine matrix method as illustrated earlier. p2 is 
calculated as 

where 

bx =(cosp-cosfeos/3)/sinf 

b2 = cos/3 

& 3 = ± V l - / > 2 - 6 2 

The positive and negative signs of b3 can be decided from the 
observation of the given mechanism construction in the local 
coordinate system. 

Once p2 is determined, the analyses of /2 and /3 of the 
RRGG are similar procedure as the analysis of l2 and /3 of the 
RGGR by letting /2 and /3. Therefore, the transformation 
matrix equation (27) could be used with negative c com
ponents in calculation of l2. 

The output angle <j> for the rotation about thep2-axis can be 
measured with any arbitrary reference. The ouptut angle <$> is 
chosen as the angle between the two planes formed by p2 and 
/ ] , andp 2 and /2. Thep2l2-plane is chosen as a reference. The 
output angle could be completely determined from the 
following two equations 

sin<£ = 
(^22)4/2,+ (Tl2),l2y+ (r3 3)4cosa 

(r31)4sina 
(47) 

and 

P2x 
Ply 
Plz 

1 

sinf 

plx + lJxcos£ 
ply + lJycos£ 
pu+lucos£ 

- /u rS in f ilyPlz-ljzPiy 
-ljysm{ InPix-ljxPu 
- / k s i n f hxP\y-hyP\x 

61 
b2 

b, 
(46) 
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(T2i)^2x ~ (Tn)Ally + (r32)4cosa 
(48) 

B 

( r 3 1 ) 4 s i n a 

where the t ransformation matrix [Ty]4 is obtained as 

ITU\* = 

1 

sin/3 

P2xSml3 - / 1 X - P 2 X C 0 S / 3 -P2,lJz+P2zLly 
p2ysml3 -lJy-p2yCosfi -Pizljx+PzxLu 

_ p2zsin/3 -lu-p2zcosP -Pixhy+Piyhx 

(49) 

4 Displacement Analysis of the RRGC Mechanism 

The displacement analysis of the RRGC four-link spatial 
mechanism shown in Fig. 9 can be performed by using part of 
the analysis scheme of the RRGG. 

The known data of the RRGC mechanism shown in Fig. 9 
are the lengths /) and l2, the vectors 74, and /3, the direction of 
rotation^, the angles f, -q, a, /3, e, and the input angle 6. The 
definition of the angles is the same as the RRGG, except angle 
e between /3 and /4, which is chosen to be less than ir. The 
unknown quantities of this mechanism are / ] , l2, and /3. 

The displacement analysis of the RRGC can be performed 
easily by using part of the analysis scheme of the RRGG for 
p2 and part of the similar analysis scheme of the RGCR for l3 
and the output angle. 

.+ 

Fig. 9 The schematic diagram of RRGC four-link spatial mechanism 
and its known data 

Table 1 Output angle (j> and transmission angle \p versus 
input angle 0 of the RGGR mechanism, all angles in degree 

5 Numerical Examples 

For the numerical illustrations, the dimensions and other 
known data of the spatial four-bar linkages are 
follows. 

Example 1 

RGGR mechanism 

lx = 101.6 m m 
l2 = 381.0 m m 
I] = 254.0 m m 
/4 = 314.2 m m 
U = (304 .8 ,0 ,76 .2) 
A = ( 0 , 0 , 1 ) 
Pi = ( 1 , 0 , 0 ) 
p = 90 deg 
a = 90 deg 

Example 3 

RRGG mechanism 

ll = 119 .0mm 

l2 = 248.6 m m 
/3 = 186.7 m m 
/,} = 225.6 m m 
U = ( 1 , 0 , 0 ) 
Pi = ( 0 , 0 , 1 ) 
a = 90 deg 
(3 = 92.27 deg 
7 = Odeg 
p = 158.17 deg 

Example 2 

RGCR mechanism 

/, 

h 
h 
u 
Pi 
Pi 
p 
a 

1> 

= 203.2 mm 
= 381.0 mm 
= 314.2 mm 
= (304 .8 ,0 ,76 .2) 
= ( 0 , 0 , 1 ) 
= ( 0 , 0 , 1 ) 
= 90 deg 
= 90 deg 
= 74 deg 

Example 4 

RRGC mechanism 

li 
li 
LA 
h 
u 
Pi 

r 
a 
e 

= 119.0mm 

= 248.6 mm 
= 228.6 mm 

given as 

= (0.4082,0.8165,04082) 
= ( 1 , 0 , 0 ) 
= ( 0 , 0 , 1 ) 
= 90 deg 
= 90 deg 
= 108 deg 

110 
100 
90 
80 
70 
60 
50 
40 
30 
20 
10 
0 

- 1 0 
- 2 0 
- 3 0 
- 4 0 
- 5 0 
- 6 0 
- 7 0 
- 8 0 
- 9 0 

-100 
-110 

Table 2 

91.6 
75.1 
63.0 
53.3 
45.3 
38.4 
32.5 
27.4 
23.4 
21.0 
21.8 

29.9 

47.9 
70.0 
90.8 

108.6 
123.7 
136.6 
148.1 
158.7 
169.2 

180.5 
194.4 

165.6 
179.5 
190.8 
201.3 
211.9 
223.4 
236.3 
251.4 
269.2 
290.0 
312.1 
330.1 

338.2 
339.0 
336.6 
332.6 
327.5 
321.6 
314.7 
306.7 
297.0 
284.9 
268.4 

Positions of the RGGR mechanism 
coordinates at 8 = 60 deg, 

„ Configuration 1 
/ 

h 50.8 
h 254.0 
h 0.0 
U 304.8 

J 
88.0 
69.8 

-157.2 
0.0 

k 
0.0 

275.3 
-199.1 

76.2 

all lengths i i n m m 

„ Configuration 2 
/ 

50.8 
254.0 -

0.0 
304.8 

J 
88.0 

262.5 -
174.5 

0.0 

k 
0.0 

-108.4 
184.6 
76.2 

65.8 
62.3 
58.7 
54.9 
51.0 
47.2 
43.5 
40.1 
37.1 
34.8 
33.4 
32.9 

33.4 
34.8 
37.1 
40.1 
43.5 
47.2 
51.0 
54.9 
58.7 
62.3 
65.8 

in system 

Resultant 
101.6 
381.0 
254.0 
314.2 

With input angle 6 as a parameter, the vectors l\,l2, and /3, 
the output angle <$>, and the transmission angle \p are deter
mined. The transmission angle is defined as an angle between 
- 1 2 and /3. The results of Example 1 are tabulated in Table 1 
for two possible configurations of the RGGR mechanism, 
i.e., there are two output angles 4>x and 4>2 for a given input 
angle 6. The transmission angles are the same in both con
figurations. Table 2 shows three components of each of the 

vector lu li, and /3 in the global coordinates corresponding to 
a particular input angle, in this case, 8 = 60 deg for the 
RGGR mechanism. For Example 2, Table 3 shows output 
angle and the calculated length of link 3 corresponding to 
input angle 6 in the RGGR mechanism. 

For Examples 3 and 4, the results are tabulated in Table 4 
for the RRGG mechanism and in Table 5 for the RRGC 
mechanism. Tables 4 and 5 show the results of the trans
mission angle and output angle for each input angle. 
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Table 3 Output angle 0 and the length of link 3 versus input 
angle 8 of the RGCR mechanism, angles in degree and lengths 
in mm 

6 
90 
100 
110 
120 

130 
140 
150 

160 
170 
180 

190 
200 
210 

220 
230 
240 

250 
260 
270 

01 
248.4 

264.3 
274.5 
282.6 

289.5 
295.7 
301.3 

306.3 
311.0 
315.2 

318.9 
322.3 
325.1 

327.4 
328.9 
329.4 

328.5 
325.1 
315.8 

h 
181 
270. 
324. 
365, 

397, 
422. 
441. 

454. 
462. 
465. 

462. 
454. 
441, 

422. 
397. 
365. 

324. 
270. 
181. 

In the numerical example of configuration 2 of the RRGC 
mechanism, the input angle is limited to the range of 80 to 
- 160 deg due to the construction of the mechanism. Another 
limitation should be observed. The motion that joint B of the 
mechanism passes through the cylindrical joint C during an 
increment of the input angle from -100 to -110 deg is 
impossible in actual cases, although it is theoretically possible 
in the analysis. Therefore, the range of motion of con
figuration 2 is divided into two intervals - 80 to -100 deg 
and -110 to -160 deg. 

Conclusion 

The direction cosine matrix method has been developed for 
a displacement analysis applicable to all types of four-link, 
spatial mechanisms. The analyses of the RGGR, RGCR, 
RRGG, and RRGC mechanisms have been illustrated to 
demonstrate this method. The advantage of this method is 
that the analysis yields exact solutions without loss of 
geometric interpretation and without the need for either 
numerical or iterative schemes. 

The special property of the direction cosine matrix, that 
each element equals its own cofactor, is the focus of this 
analysis. Using this property, we avoid the inherent dif
ficulties in the displacement analysis of four-link spatial 
mechanisms. For example, without using this property, 
equation (9) would be replaced by 

T-,3 = i V i - n - r ^ 

T2, = ±^\-T\x-T\2 

r33 = ± V i - r ? , - r 2 2 

and only one of the eight sets of possible combinations would 
be the solution. In another example, an algebraic equation of 
up to eighth-degree polynomial in reference [10] has to be 
solved numerically. 

The extension of this method to a displacement analysis of 
mechanisms with more than four links and the continuation 
of kinematic analyses for determining velocities and ac
celerations of mechanisms with four or more links will be the 
topics of forthcoming papers. 
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Engineering Formulas for Fractures 
Emanating From Cylindrical and 
Spherical Holes1 

R. H. Nilson2 and W. J. Proffer2 

Generalized integral formulas based on the weight-function 
technique are used to calculate stress intensity and opening 
displacements for planar or axisymmetric fractures emanating 
from a cylindrical or spherical hole in an elastic medium. 
These approximate formulas reduce to known exact solutions 
in the limits of very short (notch) fractures or very long 
[penny-shaped or Griffith) fractures. In the intermediate 
range, where fracture length is comparable to hole size, the 
approximation is generally accurate within a few percent, as 
demonstrated by comparison with available numerical results 
for the planar problem of a circular hole with an arbitrary 
number of radial cracks as well as the axisymmetric problems 
of a cylindrical or spherical hole with a disk-shaped cir
cumferential fracture. The generalized integral formulas 
provide a fast, simple, and reasonably accurate method for 
solving a broad class of engineering problems, including 
hydraulic and explosive fracturing applications, in which the 
following features are important: cavity pressurization, stress 
concentration around the cavity due to in situ compressive 
stresses, arbitrary pressure distribution along fracture, 
varying fracture length, and multiple fracturing. 

1 Introduction 

Fractures emanating from cylindrical and spherical cavities 
are of practical importance not only in the design of load-
carrying structures [1], but also in a variety of geological 
applications such as hydrofracture of oil wells [2], rock 
blasting with explosives [3], well shooting with explosives or 
propellants [4], and containment of underground nuclear tests 
[5]. In all of these geological problems the fractured surfaces 
are pressurized by a flowing liquid or gas, so the pressure 
distribution is generally nonuniform and it not known 
beforehand. To analyze the coupled problem of fluid motion 
and rock deformation it is customary and expedient to rely on 
closed-form integral representations for the stress intensity at 
the fracture tip and the opening displacement along the 
fracture. 

This work was sponsored by the Defense Nuclear Agency under RDT&E 
RMSS Code C4000 83466J24AMXJA 00002 H2590D. 

2S-Cubed, P.O. Box 1620, La Jolla, Calif. 92038. R. H. Nilson is an Assoc. 
Mem. ASME. 

Manuscript received by ASME Applied Mechanics Division, November, 
1983; final revision, May, 1984. 

The well-known integral formulas for wedge-shaped [6] 
(planar) and penny-shaped [7] (axisymmetric) fractures do 
not, however, take into account the presence of the 
pressurized cavity that is the source of the fractures. Yet it is 
the local stress field around the cavity that controls the 
initiation of the fracture [8, 9], so this feature must be in
cluded in any unified treatment of fracture initiation and 
propagation. Moreover, in high-pressure blasting and well-
shooting applications the hoop tension around the cavity is 
sufficient to drive the fractures for several cavity radii [3, 10], 
even without any pressurization of the fractured surfaces. In 
all instances the fracture is initially short compared to the 
cavity diameter, but usually grows very long compared to the 
cavity diameter, suggesting the need for an analytical model 
that spans the full range of fracture length. Also there is a 
desire for some degree of precision in the calculation of 
opening displacements, since the fluid flow rate along the 
fracture is very sensitive to the size of the aperture. Finally, 
there is a need for computational, speed, since the opening 
displacements and stess intensity must generally be calculated 
at each discrete time step in a hydraulic fracturing analysis. 

Previous investigators have used mapping and collocation 
methods or finite element methods to investigate the problem 
of fractures emanating from cylindrical [10-14] and spherical 
[15] holes. Such studies provide highly accurate numerical 
results for a number of very important special cases. 
However, these methods are somewhat costly and rather 
cumbersome to be directly implemented in an overall treat
ment of the hydraulic fracturing process, and the available 
tabular and graphical results do not include the effect of 
pressure variation along the fracture. 

The present paper describes a pair of simple closed-form 
integral formulas that can be used to rapidly calculate stress 
intensity and opening displacements for planar or axisym
metric fractures emanating from cylindrical or spherical 
holes. All of the following features are taken into account: 

1. arbitrary pressure distribution along fracture, 
2. influence of cavity pressurization, 
3. ratio of fracture length to cavity size, 
4. compressive stress concentrations around cavity, and 
5. multiple fractures. 

Comparison with previous analytical and numerical work 
shows that accuracy is generally within a few percent for a 
broad range of test problems. 
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Fig. 1 Wedge-shaped fractures emanating from a cylindrical hole. 
Comparison of present formula (solid lines) with collocation results of 
Bowie [11] (symbols) for three different loading configurations. 

2 Analysis 

In accordance with the weight-function methodology of 
Bueckner [16] and Rice [17], the strength of the tensile stress 
singularity at the tip of a fracture emanating from a hole in an 
infinite elastic medium can be calculated from the following 
integral formula 

K=krLi(p-a)f(v\) dx 

41? 
(i) 

in which K is the (mode 1) stress intensity factor, L is the 
length of the fracture, R is the radius of the hole, x is the 
position variable along the fracture, P(x) is the internal 
pressure within the fracture, and a(x) is external confining 
stress acting normal to the fracture plane. The configuration 
function, / , is closely related to the weight function, M, of 
Bueckner [16] and Rice [17] M = 2(L/TT(Z.2 = x2)),/2f; either 
depends only on the geometry. The simplified form of 
equation (1) assumes that any loading due to the 
pressurization of the hole or the application of confining 
stress has been included in P(x) or a(x) as an equivalent 
crack-line loading, in accordance with the rules of super
position [18, 19]. 

The width of the fracture (twice the opening displacement) 
is derived directly from the stress intensity relationship (1) by 
application of Castigliano's theorem in the manner suggested 
by Paris [19, 20] 

•K G J . VJo v " V a R J V a M p / 

ft— a \ f a+R \" ada 

A a 'Rj\x+R J 4ar^x2 

in which G and v are the shear modulus and Poisson's ratio, 
and n = 0 or 1 for planar or axisymmetric cases, respectively. 

To apply the formulas (1) and (2), it is only necessary to 
insert a general expression for the weighting function, / . 
Numerical methods [21] could be used to obtain tabular 
listings of f(xlL) for specific geometries and particular 
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Fig. 2 Disk-shaped fracture emanating from a cylindrical hole. 
Comparison of present formula (solid lines) with collocation results 
( A , o) of Keer, Luk, and Freedman [14] and finite element results (o ) of 
Benzley[14]. 
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Fig. 3 Disk-shaped fracture emanating from a spherical cavity. 
Comparison of present formulas (solid lines) with collocation results 
( o , n ) of Atsumi and Shindo [15] and present finite elements 
calculations ( A ) [24]. 

choices of L/R, but the computations are tedious, and the 
outcome must eventually be fitted with analytical formulas to 
avoid storage and interpolation of extensive tables. In the 
present instance, moreover, the limiting forms of / are 
available in closed form for small and large values of L/R, so 
it is a relatively simple matter to splice together these limits 
with smooth analytic functions. To this end, it is convenient 
to partition the weight function into a product of two func
tions (f = /rad/notch) which will each be chosen in an arbitrary, 
but reasonable, fashion. 
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Radial divergence effects will be represented by/ rad 

_(x + R\" _/x/L + R/L\" 
J^~\T^R) -vTTRir) (3) 

such that / r a d = 1 in planar problems with n = 0, while in 
axisymmetric problems with n = 1 

/ r a d - l when L/R«\ (4) 

-x/L when L/R»\ (5) 

The effects of a stress-free (or uniformly pressurized) cavity 
surface are acounted for by /n o t c h , which is based on the ex
pectation that all short cracks should be equivalent to an 
external notch crack in the wall of a half space 

/ n o t c h = l + 0 . 3 ( l - | ) ( T T ^ ) 2 ' " (6) 

so 

/ n o t c h - 1 + 0 . 3 ( l - | ) when L/R«\ (7) 

when L/R»\ (8) - 1 

In the short crack limit the correction function, 0.3(1 - x/L), 
is a good approximation to the "Green's function" which was 
numerically determined by Hartranft and Sih (see Fig. 4.5 in 
reference [22]) by application of the alternating method to a 
planar edge crack. These free-surface corrections should 
decay at least as fast as (R/(R+L))'", owing to the radial 
divergence around a cylindrical (m = 2) or spherical (m = 3) 
cavity. A somewhat stronger decay is, however, expected 
because the free surface curves away from the fracture and is 
of very limited extent, compared to the wall of a half space. 

The long fracture limit of the proposed formulas is in 
precise agreement with the well-known exact solutions [6, 7] 

2 r- fL (x \ " dx 

VZ7 

Vf = 
4 ( l - o ) G " ( £ \" d£ \ a da 

o ( ~ \ a ) V a ^ p ' V P T * 
(10) 

for both the planar problem (n = 0) and the axisymmetric 
problem (n = 1). Thus, the formulas should be essentially 
exact for very long fractures as well as for short notch 
fractures, even for arbitrary distributions of pressure along 
the fracture. 

Cavity pressure causes a hoop tension around the cavity, as 
given by the following expressions in which Pc is the cavity 
pressure, R is the cavity radius, and the cylindrical cavity is 
assumed to be very long [23]. 

sphere: 

cylinder: 

<re=-Pc/2(R/(R+x))3 (11) 

ae = -Pc(R/(R+x))2,<Jz=0 (12) 

This loading is superposed as a negative contribution to the 
compressive stress, a(x), acting along the crack. For very 
short fractures (R/L > > 1) this treatment amounts to the 
superposition of a tensile stress that is uniform along the 
crack and is of magnitude Pc or Pc/2 for the cylindrical and 
spherical cases, respectively, in keeping with previous exact 
analyses [10-15]. For very long fractures (R/L << 1), this 
treatment is equivalent to the application of a splitting force 
(integral of ae) of proper magnitude at the center of the 
cavity, in keeping with the asymptotic argument of 
Ouchterlony [10]. So, again, the analytical approach should 
be exact in the limiting cases of short or long fractures. 

The intermediate range, with fracture length comparable to 
hole radius, can only be checked by comparison with the 
numerical results that are available for some special cases. In 

evaluating the present analytical formulas (1) and (2), all 
integrations are done by the trapezoidal rule using only 10 
discrete intervals along the fracture. Singularities are removed 
by rewriting the differentials as follows: 

a da 
= d^Ja2 -x2, 

dt 

4a^l2 
= ds in - ' (£ /a ) (13) 

and then simply replacing the nonsingular differentials with 
their finite differences across the integration intervals. 
Although these measures slightly degrade the accuracy, they 
are in keeping with our goal of providing engineering ac
curacy with speed and simplicity. 

3 Comparison With Numerical Results 

The plane strain problem of two radial cracks emanating 
from a cylindrical hole is illustrated in Fig. 1. The normalized 
stress intensity factor predicted by equation (1) is in good 
agreement with the numerical results of Bowie [9, 11, 20] for 
three different loading configurations. When the pressure is 
restricted to the hole, the hoop tension of equation (12) is the 
only loading along the crack; K* = 1.12 in the short-crack 
limit [16, 17] and K* — 0 in the long-crack limit. When 
pressure is applied to the fractured surfaces as well as the 
hole, A'* = 2(1.12) in the short crack limit, and A:* = 1 in the 
long limit when this geometry becomes equivalent to a 
Griffith crack [6] in an infinite medium. In the third case the 
cracked hole is subjected to a uniaxial tensile stress, P. So, 
analogous with the treatment of cavity pressurization, it is 
appropriate to apply a tensile loading of 

a,= - (2+1/(1 +x/R)2 +3/(1 +x/R)4) (14) 

which is taken from the exact solution [23] for the stress 
concentration around an unfractured hole. Since all three 
configurations are well approximated, the integral formulas 
should perform well in the general hydrofracture problem 
where the hole is uniformly pressurized, the fracture is 
nonuniformly pressured, and the in situ compressive stress 
field is biaxial. 

The axisymmetric problem of a disk-shaped fracture 
emanating from a long cylindrical hole is illustrated in Fig. 2. 
The normalized stress intensity and the normalized fracture 
width predicted by equations (1) and (2) are in good 
agreement with the numerical results reported by Keer, Luk, 
and Freedman [14] for the case of uniform pressure acting on 
the walls of the cylinder and the surface of the fracture. The 
crack pressure is the only loading applied in the present 
analysis, since no axial stresses are induced by the 
pressurization of a long cylindrical hole. In the short crack 
limit A"* = 1.12 and w* = 1.46(ir/2), in agreement with notch 
crack solutions [16, 22], In the long crack limit K* = 2/ir and 
w* = 1, in agreement with the exact solution (9, 10) for a 
penny-shaped crack in an infinite medium [7]. This example 
provides a test of the weighting function, / r a d , which seems to 
give an adequate accounting of radial divergence effects. 

The axisymmetric problem of a disk-shaped fracture 
emanating from a spherical cavity is illustrated in Fig. 3. The 
stress intensity and opening displacement from (1) and (2) are 
in reasonable agreement with the numerical results of Atsumi 
and Shindo [15] for the case of uniform pressure applied 
within the cavity and the fracture. Here, the cavity pressure 
contributes a hoop stress of P/2 at the cavity wall, in ac
cordance with (11), so K* = (3/2)1.12 and w* = 
(3/2)(7r/2)1.46 in the short fracture limit. As in the previous 
example, the problem becomes equivalent to the penny-
shaped configuration as the fracture grows larger. The 
analytical approximation (1) and (2) is about 10 percent too 
large in the intermediate range, which suggests a somewhat 
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Fig. 4 Multiple-shaped fractures 2, 6, or 15 emanating from a cylin
drical hole. Comparison of present formula (solid lines) with numerical 
results of Ouchterlony (symbols) [10] for pressure in hole and cracks 
( D , o, a) and for pressure in hole only ( + , x , o). 

larger error than in the previous examples. Also included in 
Fig. 3 are some finite element results [24] which the authors 
obtained as a check on the analytical formula, prior to our 
awareness of the work by Atsumi and Shindo. 

4 Multiple Fractures 

Mutiple fractures are expected to occur when the rise time 
of the driving pressure pulse is relatively short compared with 
the time required for stress waves to circle the cavity [4] as in 
blasting and tailored-pulse well shooting. The present formula 
(1) and (2) can be extended to planar multifracture con
figurations by including in the overall weighting function, / , 
an additional multiplier, fN, of the following form 

(/» + / « wR/N) 
(15) 

in which 

/ - = 2 
V N - I 

N 
(15) 

and Nis the number of fractures. Thus, the multiplier is unity 
(Xv = 1) when the fracture length, L, is small compared to the 
circumferential distance between fractures; while for long 
fractures the multiplier approaches an asymptotic value ( / = 
/ „ ) which depends only on the number of fractures. The 
particular form o f / „ given in the foregoing is recommended 
by Ouchterlony [10] as having "a high degree of accuracy" in 
calculating the stress intensity factor of fully pressurized star 
cracks (i.e., long fracture limit), and the proposed form of fN 

recovers the desired notch crack behavior in the short fracture 
limit. The intermediate range of fracture length, shown in Fig. 
4, is in good agreement with the numerical results of 
Ouchterlony for the planar problem of a pressurized hole, 
with and without pressure on the crack surfaces (as in Fig. 1). 

Opening displacements of the multifractures can be 
calculated from equation (2) provided that fN is included in 

both the weight functions that appear. The calculated 
displacement at the entrance, or mouth, of each fracture is 
then reduced by a factor o f / „ 2 , in the long fracture limit, 
which agrees with the star crack analysis of Williams [13] in 
the limit of large N. The calculated displacements near the tip 
of the fracture will also be reduced byf„2, in the long fracture 
limit, which is in conflict with the requirement that near-tip 
displacements must always be proportional to K, and hence 
proportional to / „ . This deficiency can be corrected by the 
introduction of a slightly more complex weight function, such 
as 

•K / 2VA/-1 \ / x2 \ 1/2 

/»=1+T(^r--1)(1-^) (17) 

which properly recognizes that "near-tip" loadings always 
have the same effect on stress intensity, regardless of the 
presence of other fractures, which are relatively far away 
compared to the size of the "near-tip" region. The use of (17) 
instead of (16) ensures that displacements behave properly at 
both ends of the fracture; it does not affect the upper three 
curves in Fig. 4, and it causes a slight lowering of the bottom 
three curves, in better agreement with the data. In the exe
cution of practical hydrofracture calculations, however, it 
seems that the simple formula (16) usually gives about the 
same overall result as (17). In closing, it is noted that the other 
weight functions, /nolch and / r a d , do preserve the correct 
behavior of opening displacements at both ends of the 
fracture. 

5 Discussion and Summary 

The generalized integral formulas (1) and (2) and the 
analytical weight functions (3), (6), and (15) proposed here 
provide a fast and simple approximation, with engineering 
accuracy, for a broad class of fracturing problems. The 
formulas are essentially exact when fractures are either very 
short or very long compared to the cavity radius, regardless of 
the pressure distribution along the fracture and whether or 
not the cavity is pressurized. The intermediate range of 
fracture lengths has been checked against numerical results 
for several different geometries and loading configurations. 

Although the limiting forms of the equations are dictated 
by previous exact solutions, the transitional character was 
arbitrarily chosen to be as simple as possible while still 
consistent with physical expectations. Agreement could be 
improved by introducing more degrees of freedom in the 
weighting functions and adjusting the parameters to fit the 
available numerical results. Similarly, rigorous expansion 
techniques [25] could be used to generate additional con
straints to be satisfied by the transitional functions. But it is 
difficult to maintain the desired degree of generality in 
making such refinements, and computational complexity is 
certain to increase. So, it seemed more useful to demonstrate 
that acceptable engineering accuracy is generally obtainable 
using a very simple, and yet broadly applicable, ap
proximations. 
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Wave-Front Approximations in a Moving 
Coordinate System 

J. G. Harris1 

A wave-front approximation to the wave emitted when a 
propagating mode III crack abruptly slows it speed of ad
vance is calculated. Of particular interest is the approximation 
of the Cagniard-deHoop inversion integral when it is ex
pressed in terms of the variables of a moving coordinate 
system. 

Introduction 

To approximate the emission from a subsurface rupture, 
Harris and Achenbach [1] calculated a wave-front ap
proximation to the wave radiated by a propagating mode III 
crack when it abruptly changed its speed of advance. In that 
paper most of the details of the calculation were suppressed. 
The purpose of this Note is to explain how this wave-front 
approximation was made using a moving coordinate system, 
the Cagniard-deHoop inversion technique, and Watson's 
lemma. The principal point to be made is that, because it is 
expressed in terms of the coordinates of the moving system, 
the Cagniard-deHoop inversion integral must be ap
proximated with great care. 

Problem Formulation 

A mode 777 crack has been propagating at a constant speed 
t>! along the *-axis in the direction of increasing x for t <0 and 
has induced an associated wave field. When the crack tip 
reaches x = 0 at t = 0 it suddenly slows its speed of advance to a 
new, constant speed v2, emitting as it does so, an additional 
wave field. It is this second wave field that will be ap
proximated here. 

'Assitant Professor, Department of Theoretical and Applied Mechanics, 
University of Illinois, Urbana, 111. 61801. Assoc. Mem. ASME 

Manuscript received by ASME Applied Mechanics Division, January, 1983; 
final revision, January, 1984. 

At x = 0 and t = 0 the crack is assumed to be semi-infinite 
and to lie in the (x,z)-plane. Suppose the crack continued to 
advance with speed vt. Then the displacement, for x>0, on 
the positive side of the crack, y = 0 + , would be 

w(.x,0\t) = H(t-x/vl)f(x,t) (1) 

where, for small t and thus small x,f(x,t) has the approximate 
form [2] 

Xx,t)=Mt-x/Vly
/2, K > 1 . (2) 

The parameter K= 1 for brittle fracture, otherwise K> l ; / 0 is a 
constant. Because the crack tip does not propagate with speed 
vi but rather with speed v2, the crack opening must be closed 
by subtracting (1) from the displacement at the crack's surface 
for v2t<x<t>,r. 

To put these ideas into a mathematical form, introduce the 
moving coordinate 

q = x-v2t (3) 

and formulate an initial boundary-value problem, for the 
second wave-field, in the coordinate system {q,y). The form
ulation, and its subsequent solution parallels that given by 
Achenbach [3] for a mode II crack, so that the only details 
that need be given here are the boundary conditions. In the 
moving coordinate system the z-displacement 
w(x,y,t) = W{q,y,t) and the boundary conditions at.y = 0 + (the 
problem is antisymmetric) are 

dW/dy = H(q)T+, W=H{-q)W~ 

-H{.q)H(.t-snq)F(q,t) {Aa,b) 

where, from (1) and (2),f(x,t) = F(q,t) and 

F(q,t)=F0(t-sl2qy/2, F0=fQ/{vxsnY
/2 (5a,6) 

for small t and thus small q. The function H(t) is the 
Heaviside step function, sl2=(V) -v2)~\ and T+ and W~ 
are unknowns. The Laplace transform over time (transform 
variable/)) of the solution to this problem is 

• - ( - J l 2 ) 

1-KlJBr 7 " (J) 
W(q,y,p)- F*(H,p)exp[pttq-yy)]dH (6) 

where Br is the Bromwich path. The functions y and 7 are 
given by 

y-=[s-m+s v2)V
A, y=[sH\-v2k)2-e]v> {la,b) 
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and s = 1/c where c is the shear-wave wave-speed. The term 
F*(£,p) is the combined spatial (transform variable p£) and 
temporal Laplace transform of F(q,t). For largep 

F*(H,p) = F(p)/\p(Z+sl2)] (8a) 

F(p) = F0T[(K + 2)/2]/p^+T>/2 (8b) 

where T is the gamma function. The integral (6) represents the 
additional wave field excited when the crack abruptly slows it 
speed of advance. The remainder of this Note outlines how to 
approximate w(x,y,t) and dw/dt near the wave front starting 
from (6). 

Wave-Front Approximation 

Introduce the polar coordinates (R,Q) by setting q = R cos 9 
and .y = .R s i n e . In (6) let 

T= -ZRcose + yRsinQ (9) 

and distort the integration contour to a Cagniard-deHoop 
contour [4]. Then approximate the resulting integral for large 
p using Watson's lemma [5]. The result of these operations is 
the following: 

dr (10a) 

E(6,vx, v2) = 
[25(1 + vls)(vl- v2)]

 y> sin(6>/2) 

(I-Viscosd)^^2 (l-y,,scos0) 
(16) 

F(p) r °° 
W(q,y,p) = - [lim A(r)\-¥!-1 

y-{-sl2)(dH + /dT)(T-T+y/2} 
A(T) = Im\ (10b) 

7_[f+(T)][f + (r)+s,2] J 

where 

T + = sR{v2scose+[l-(v2s sine)2] '^)/[l-(i ;25)2] (11) 

and £+ (T) is found by inverting (9) and taking that branch 
which makes 7m(£)>0. Therefore the displacement for T near 
T+ is 

^ ( ^ , r ) = - ( 7 r ) - U ( r + ) F ( r ) * ( r - r + ) , / ' (12) 

where A(T+) is calculated by taking the limit indicated in (10a) 
and * means that the two functions are to be convolved with 
one another. From (10a) the variable T is identified as the time 
t. But T + is not as easy to identify. Clearly it is an arrival time; 
however, it is one that depends on time t through the moving 
coordinates (R,0). Looking back at (10a), it would seem, at 
first glance, that if r is identified as time, then the lower limit 
of integration contains the variable of integration. 

This quizzical result can be resolved by noting that it is the 
difference (T-T+) that is wanted. To calculate this return to 
the fixed coordinate system. Setting x = r cos 6 and y = r sin 6, 
and noting that R cos 0 = (r cos 6 -v2t) and R sin 0 = r 
sin0, (11) can be approximated to give 

T + = [-s(v2tcosd-r)]/(l-v2scosd) + Ol(t-sr)2] (13) 

Therefore, 

T-T+ = (t-sr)/(l-v2scosd) + 0[(t-sr)2]. (14) 

Note that as T—T+ , t—sr and T+ —sr, and the amplitude term 
in (12) becomes A(sr). One might at first be tempted into 
evaluating T + at t = sr, and thus be led to the reasonable but 
erroneous result that (T-T+) = (t — sr). However, as shown 
in the foregoing, the time t in (13) must be retained if the 
doppler factor (1 -v2scosff)~[ in (14) is not to be lost. Fur
ther, it is interesting to note that (14) can be interpreted as 
follows: The time difference (T-T+) is that between the 
successive emissions made as the original crack is closed, 
while (t — sr) is that between the successive wave-front arrivals 
of these emissions [6]. 

The wave-front approximation to the displacement w(r,d,t) 
thus becomes 

and 

e(t)=F0H(t)ri(K + 2)/2]t^+^/2/T[(K+3)/2] (17) 

It is also of interest to examine the time derivatives in the 
two coordinate systems. They are related as follows: 

dw/dt = DWDr, DW/Dr=dW/dT-v2(dW/dq). (18a,b) 

It can be shown that for large p the Laplace transfrom over 
time of DW/DT is 

(pw7DT)=p[\-v2^(T+)]W(q,y,p) (19) 

where W(q,y,p) is given by (10a). At this point (19) is treated 
exactly as was (10a). Note that the factor within the brackets 
equals the droppler factor (1 -v2scosff)~{, but that the p 
causes the inverse transform of (19) to be multiplied by the 
compensating factor (1 - v2scosd). Thus the wave-front 
approximation, in the fixed coordinate system, to the particle 
velocity is simply 

dw/dt = -(c/2-Kr)'AE(B,vuv2)(de/dt). (20) 

Summary 

The central point of the analysis is that, because a moving 
coordinate system us used T + depends on /, as well as (x,y), 
and must be approximated as given in (13). Care in calculating 
the time derivative is also needed. 
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Large-Amplitude Vibrations of Rectangular 
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and s = 1/c where c is the shear-wave wave-speed. The term 
F*(£,p) is the combined spatial (transform variable p£) and 
temporal Laplace transform of F(q,t). For largep 

F*(H,p) = F(p)/\p(Z+sl2)] (8a) 

F(p) = F0T[(K + 2)/2]/p^+T>/2 (8b) 

where T is the gamma function. The integral (6) represents the 
additional wave field excited when the crack abruptly slows it 
speed of advance. The remainder of this Note outlines how to 
approximate w(x,y,t) and dw/dt near the wave front starting 
from (6). 

Wave-Front Approximation 

Introduce the polar coordinates (R,Q) by setting q = R cos 9 
and .y = .R s i n e . In (6) let 

T= -ZRcose + yRsinQ (9) 

and distort the integration contour to a Cagniard-deHoop 
contour [4]. Then approximate the resulting integral for large 
p using Watson's lemma [5]. The result of these operations is 
the following: 

dr (10a) 

E(6,vx, v2) = 
[25(1 + vls)(vl- v2)]

 y> sin(6>/2) 

(I-Viscosd)^^2 (l-y,,scos0) 
(16) 

F(p) r °° 
W(q,y,p) = - [lim A(r)\-¥!-1 

y-{-sl2)(dH + /dT)(T-T+y/2} 
A(T) = Im\ (10b) 

7_[f+(T)][f + (r)+s,2] J 

where 

T + = sR{v2scose+[l-(v2s sine)2] '^)/[l-(i ;25)2] (11) 

and £+ (T) is found by inverting (9) and taking that branch 
which makes 7m(£)>0. Therefore the displacement for T near 
T+ is 

^ ( ^ , r ) = - ( 7 r ) - U ( r + ) F ( r ) * ( r - r + ) , / ' (12) 

where A(T+) is calculated by taking the limit indicated in (10a) 
and * means that the two functions are to be convolved with 
one another. From (10a) the variable T is identified as the time 
t. But T + is not as easy to identify. Clearly it is an arrival time; 
however, it is one that depends on time t through the moving 
coordinates (R,0). Looking back at (10a), it would seem, at 
first glance, that if r is identified as time, then the lower limit 
of integration contains the variable of integration. 

This quizzical result can be resolved by noting that it is the 
difference (T-T+) that is wanted. To calculate this return to 
the fixed coordinate system. Setting x = r cos 6 and y = r sin 6, 
and noting that R cos 0 = (r cos 6 -v2t) and R sin 0 = r 
sin0, (11) can be approximated to give 

T + = [-s(v2tcosd-r)]/(l-v2scosd) + Ol(t-sr)2] (13) 

Therefore, 

T-T+ = (t-sr)/(l-v2scosd) + 0[(t-sr)2]. (14) 

Note that as T—T+ , t—sr and T+ —sr, and the amplitude term 
in (12) becomes A(sr). One might at first be tempted into 
evaluating T + at t = sr, and thus be led to the reasonable but 
erroneous result that (T-T+) = (t — sr). However, as shown 
in the foregoing, the time t in (13) must be retained if the 
doppler factor (1 -v2scosff)~[ in (14) is not to be lost. Fur
ther, it is interesting to note that (14) can be interpreted as 
follows: The time difference (T-T+) is that between the 
successive emissions made as the original crack is closed, 
while (t — sr) is that between the successive wave-front arrivals 
of these emissions [6]. 

The wave-front approximation to the displacement w(r,d,t) 
thus becomes 

and 

e(t)=F0H(t)ri(K + 2)/2]t^+^/2/T[(K+3)/2] (17) 

It is also of interest to examine the time derivatives in the 
two coordinate systems. They are related as follows: 

dw/dt = DWDr, DW/Dr=dW/dT-v2(dW/dq). (18a,b) 

It can be shown that for large p the Laplace transfrom over 
time of DW/DT is 

(pw7DT)=p[\-v2^(T+)]W(q,y,p) (19) 

where W(q,y,p) is given by (10a). At this point (19) is treated 
exactly as was (10a). Note that the factor within the brackets 
equals the droppler factor (1 -v2scosff)~{, but that the p 
causes the inverse transform of (19) to be multiplied by the 
compensating factor (1 - v2scosd). Thus the wave-front 
approximation, in the fixed coordinate system, to the particle 
velocity is simply 

dw/dt = -(c/2-Kr)'AE(B,vuv2)(de/dt). (20) 

Summary 

The central point of the analysis is that, because a moving 
coordinate system us used T + depends on /, as well as (x,y), 
and must be approximated as given in (13). Care in calculating 
the time derivative is also needed. 
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sheets such as load bearing skins or glass panels are not un
common [1]. It is established that amplitudes of this 
magnitude significantly affect the vibration behavior and the 
resonance characteristics of thin plates [2-4]. 

Large-amplitude flexural vibrations of rectangular plates 
for small strains are described by two coupled fourth-order 
partial differential equations, which were first derived by 
Herrmann [4] as an extension of the static von Karman [5] 
equations. The exact solution to these equations is yet 
unknown. References to other earlier contributions on this 
subject may be found in [6, 7]. 

Herein, a general approximate approach is presented for 
the large-amplitude vibrations of plates having different 
boundary conditions. The large-amplitude deflection of plates 
is governed by the large deflection equations of plates [5, 8], 
which yield the deflected profile and the resulting membrane 
stresses. Herein, the membrane stresses evaluated are con
sidered as constant throughout the vibration. Subsequently, 
the frequency is calculated using Herrmann's equations with 
the constant membrane stresses obtained from the large 
deflection analysis. An iteration procedure used in obtaining 
the frequencies allows the plate to take its preferred mode of 
vibration at the preselected large amplitude. The membrane 
stresses developed in vibration oscillate between zero (neutral 
position) and maximum (max deflection), when the plate 
attains its greatest stiffenss. In the present treatment, 
frequencies are evaluated with membrane stresses frozen at 
their greatest values, yielding a constant and maximum 
membrane stiffness during vibration. The solutions obtained 
are upper bounds to the true frequency. 

The main features of the present analysis are: (0 a great 
reduction in computational effort: (») obtaining upper 
bounds to the large-amplitude vibrations of rectangular 
plates, which together with the lower bound solutions 
available through small deflection analyses, provide a 
comprehensive reference basis: (Hi) using a general numerical 
method, all the boundary conditions can be dealt with. The 
method can be extended to cover orthotropic plates: (iv) the 
frequencies obtained are in close agreement with the limited 
available solutions: and (y) the analysis does not allow for 
shear deformation and the inplane inertia forces. 

To demonstrate the potential of the treatment presented, 
solutions are obtained for simply supported and clamped 
rectangular plates having different boundary conditions. The 
results obtained are compared with the available solutions. 

2 Theory 

2.1 Governing Equations. Assume a large deflection 
rectangular plate in static equilibrium under the action of an 
applied transverse pressure qxy. Let the static deflections be 
ws. If the plate is now subjected to a sinusoidally varying 
exitation force of small magnitude relative to qxy, it would 
vibrate about the equilibrium position with an amplitude wd, 
which would not, by assumption, be large enough the affect 
the general state of membrane stresses in the plate. The 
analysis determines the natural frequencies of this plate, for 
which the membrane stresses remain constant at values 
relating to ws. The static deflection, and the membrane forces 
are expressed by: 

r + ^ws,xxyy + Ws,yyyy ~ 7, lf,yyws,xx ~ V,xyws„ 
D 

+f,xx^s,yy\=Qxy/D 

J.xxxx + Af.xxyy ~^~J,yyyy ='i"[\ws,xy) ~ ws,xxws, 

(D 

y] 

where a comma followed by subscripts represents partial 
differentiation with respect to the subscripts. The membrane 
forces are derived from the following: 

Fig. 1 Large-amplitude frequencies (n() of square plates with stress-
free inplane boundary conditions (Yamakl [3]). Small-amplitude 
frequencies (fts) are for rotationally free plates 19.68, and for 
rotationally fixed plates 35.86. 
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Fig. 2 Large-amplitude frequencies (II;) of square plates with im
movable boundaries (Yamaki [3]), Ramachandran [9], Wah [10], Mel [11]. 
Small amplitude frequencies (us) are for rotationally free plates 19.68, 
and for rotationally fixed plates 35.86. 
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Fig. 3 Large-amplitude frequencies (ft;) of rectangular plates with 
different aspect ratios. Upper section for rotationally free plates with 
zero inplane normal and shearing stresses, with small-amplitude 
frequencies (Jls) equal to: for b/a = 1,19.68; bla = 2,12.28; bla = 3,10.91. 
Lower section for rotationally fixed plates with immovable boundaries 
with !)„ equal to: for bla = 1,35.86; bla = 2,24.42; bla = 3,23.05. 

Nx ~J,yy» ^y ~J,xxJ ^xy ~~ J,xy \^) 

The inertia force considered is due to transverse motion 
and has an intensity of mwdJ,. The equation of motion of the 
plate can now be written by adding (mwdi„) to the flexural 
equation of the set of equations (1), and interpreting the total 
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deflection w as the sum of (ws + wd). The second equation, 
however, is based on the static deflections ws for the 
evaluation of the governing membrane stresses. 

1 
^.XXXX "•" **W tXxyy + W jyyy ~~ ~ \J ,yy W, XX ~ AJ,Xy ^ >Xy 

+/,„̂ ] = f - f ^ (3) 

^ J ,xxxx > AI ,xxyy *J,yyyy ~*-''*\.\"s,xy) ~~' WsiXXWSyy\ 

Subtracting the static component of deflection associated with 
qxy from the first equation gives: 

*^d,xxxx ' ^"^d,xxyy ~*~ "d.yyyy ~ 7^ U.yy^d.xx ~~ AJ,xyWd,xy 

+f,XxWd,yy]=-—WdJl (4) 

Assume a simple harmonic motion for the first mode. 

wd(x,y,t) = wa(x,y)sin(ut + a) (5) 

Substituting equation (5) in equation (4) and cancelling the 
term sin (bit + a) results in the governing frequency equation: 

™a,xxxx ' ^*^a,xxyy ~1" "a.yyyy 7i U.yy^a.xx ~~ AJ,xy^a,xy ' J,xx™a,yy\ 

= mw2wa (6) 

Equation (6) represents the natural vibrations of the plate 
with large amplitudes in terms of w and/ . For any preselected 
large amplitude wa, values o f / a r e first determined from the 
set of equations (1) relating to the stationary position of 
maximum deflection, for which ws = wa. Substitution in 
equation (6) for the calculated values of/, yields a standard 
eigenvalue problem. 

2.2 Boundary Conditions. For edges parallel to .y-axis, 
(a) flexural boundary conditions, (/) for rotationally free 
edges w = 0 and wxx = 0, (//') for rotationally fixed edges w 
= 0 and wx = 0; (b) membrane boundary condition, (;') for 
all the cases treated fiXy = 0, («) for the inplane condition 
perpendicular to the edges, two cases are considered, i . e . , / ^ 
= 0 to match the simply supported cases, or inplane 
displacement equated to zero to match the fixed condition. 

2.3 Numerical Solutions. First equations (1) are solved. 
Subsequently, with known values of/, the eignevalue problem 
given by equation (6) is treated, using finite differences with a 
mesh having 300-400 nodes over the entire plate. The 
algebraic eigenvalue problem derived from equation (7) is 
given by: 

\A][wa]=Qiwa) (7) 

where [A] is a square matrix depending o n / a n d representing 
the left-hand side of equation (6) expressed in finite dif
ferences. (wa} is the unknown column eigenvector. Q is 
nondimensionalized frequency. Stress function / is found 
from equations (1) and is used to form [A]. The smallest 
eigenvalue of [A] is found using the power method with the 
following iteration: 

\ (8) 
L [w)i+1=Ci[w)i+i 

where the subscripts refer to the number of iteration. ( w) / + 1 

is the assumed eigenvector for the (;+l)th iteration. The 
iteration is carried through for / = 0,1 until the 
evaluated eigenvector [w)i+l from (/+l) th iteration is 
sufficiently close to the eigenvector { w), from the preceding 
iteration. (w) ; is then the required eigenvector. C,- is the 

normalizing factor and can be shown to converge the smallest 
eigenvalueQ] as (w) converges. 

3 Discussion of Results 

The applicability of the method is demonstrated through 
treatment of two sets of plates with different flexural and 
membrane boundary conditions. The solutions presented 
extend the range of published amplitudes. A third set of 
solutions for rectangular plates serves to demonstrate the 
influence of aspect ratios on large-amplitude vibrations. 
Figures 1 and 2 show the large-amplitude frequencies of 
square plates with stress free and immovable boundary 
conditions, respectively. The results from the present analysis 
yield higher frequencies compared to the available solutions. 
However, the agreement is close for most practical purposes. 
Figure 3 represents large-amplitude natural frequencies of 
simply supported and rotationally fixed rectangular plates of 
different aspect ratios. The large-amplitude frequency for any 
given amplitude may be evaluated by simply dividing the 
given small-amplitude frequency (Qs) through the measured 
ordinate of the curve at the selected amplitude. Note that the 
solutions presented apply equally to the small vibrations of 
plates undergoing large deflections under a uniformly 
distributed loading to a static deflection equal to the large 
amplitude given herein. 
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deflection w as the sum of (ws + wd). The second equation, 
however, is based on the static deflections ws for the 
evaluation of the governing membrane stresses. 
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have been pursued, for example, as in reference [1], to 
simulate experimental results. Still, an understanding of the 
mixing process is incomplete since mixer geometries are 
marked by rapid streamwise and azimuthal change. What 
mechanisms and nondimensional parameters really control 
mixing? 

Steady inviscid solutions may be relevant in a sense. For 
flows producing steady wakes, these results initialize shear 
layer "marching" calculations, viscosity being of secondary 
importance. And for unstable wakes, steady inviscid results 
"start" rollup calculations, which induce additional mixing; 
eventually, diffusion end effects predominate as flow 
gradients due to vortex sheet spiralling become important. 
This Note addresses the boundary conditions only for "cold" 
and "hot" core flow wake interaction with different reference 
conditions. Thus, for our purposes, we neglect com
pressibility and nonlinearity (for flows with shocks, choked 
nozzles may throttle the internal flow and solutions may or 
may not exist for arbitrary ambient conditions); also, simple 
mixers with weak undulations are assumed. 

Analytical Formulation 

We consider irrotational flows with different external and 
internal reference pressures, speeds, and densities P", Ue, pe, 
and P<,U',p'. The total potentials </>*•' satisfy V2<j> = 4>eJ + 
4>e

rj + 4>e//r +(j>e'J (x, r, 0)/r2=O in cylindrical coordinates. 
Tangency conditions apply on the mixer surfaces /•"•' — R + 
/*''(*, 9) and on the shroud r = Rs + s(x), R and Rs being 
mean radii. Hence, 4>e/ = W'fx1 + <t>e''feJ/(R+fJ)2 and tf 
= 4>e

xs' (x), with V4>eJ ~ Ue''i far upstream; also, pressure 
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e2f2 
2 

Fig. 1 is assumed). Now expand/ = e/j + 
6S, + e2s2 + . . . ,<;(>*•''= t/c''x+e </> f •'' + e 2 <t> ! ' ' + • 
wi the<<l , / , , / 2 , J , , J2~0(/ i ) ,and«f; ' 2 ~ 0(Ue''x). 
0(e), V W = 0, # / (x,R±)= U*-lJ\-> (x, 8), <M (x, 

,s = 

To 
Rs) 

= Ues[{x) and </>',r(x, 0) = 0, with V0f>' - 0 upstream. 
Pressure matching on r = R yields peUe4>\ — p'U'4>\ = AP 
= (i* - P')/e ~ 0(1). The solution is difficult because 
velocities in addition to potential jump through the trailing 
edge "te" wake: spatial difference formulas must include 
these jumps in any direct approach. Here, normalized 
variables are used to make this unnecessary; we take the usual 
formulas, assuming continuity of all " 'potential' 
derivatives," yet allow the required jumps, thus simplifying 
the numerics and bringing out the governing nondimensional 
parameters. If x = x/R, r = r/R, <£?•' (x, f, 9) = # ' ' 

(x, r, e)/Ue-'R, thenpeUe2j>si - p'U'2^^. = AP shows 
how both dynamic heads appear. Setting 0avg = Vi(4>x

e + 
<£,') and[<£]= 0!e - <£,', we obtain [<£] = [<%(e) + C{(x 

• Prescribed inflow 

- Miner tangency conditions on mean radius 

rTeilplps B.C.'s on outer cylinder 

-xle) +C2(4>avg(x,l,0) - 0avEfe. 1. 0)) where C, = 
AP/Vi(peUe2 + p't/''2)andC2 = (p'C/' - peUe)/Vi(peU° 
+ p'U' ), measuring static pressure and dynamic head dif
ferences relative to an average head, similar to the powered 
engine flow boundary conditions in references [2, 3]. [<£] is not 
a true potential jump, since $ic and <S>X'' are normalized 
differently; this normalization will also allow simple airfoil 
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Since mixer flowfields are periodic, we set 4>x
e'' (x, r, 8) = 

g(6)heJ (x, f) so that gee + p2g = 0 and hM + hff + hr-/f -
p^h/r1 = 0. For traces with antisymmetric crests and troughs, 
g„{0) = cos nNB, n = 0, 1, 2, . . . , N being the lobe 
number, a lobe consisting of a crest and a trough (<t>e/r = 0 at 
the 6 planes bisecting crests and troughs) and, he/. + heJ. + 
h%lf - rP-hP-h^lf1 = 0. If/f'(.*, 6) = R J Be/ (x) cos 
nN6, then, he„j(x, I ±) = Be„^(x). Taking the shroud as 
5,(x) = / « , ( / ) , wefind/!g.(i, Rs/R) = ^.(x), he

n. (x, RJ 
R) = 0 for n >0, and h'„. (x, 0) = 0. With <Af (x, f, 8) = £o 

he
n
J cos nNd, Kutta's condition implies he„(x, 1 +) - h'„(x, 

\-) = K (xle, 1 +) - h'„ (xle, 1 - ) + ViC^K (x, 1 +) + h'„ 
(x,\~) - he

n(xte, 1+) - K(xte, l - ) ) f o r«>0 , and, h%(x, 
\+)-hl

0(x, 1-) = hl(xle> 1+) - hh(xle, 1-) + C, (x-
x,e) + ViC2(hl(x, 1 +) + h'0(x,l-) -heo(xle, l+)-h'0 
(x,e, 1-)) for n =0. C, appears only in the latter and is 
unimportant in three-dimensional effects; thus we consider C2 
alone. Both modes may be unstable. The n = 0 "jet" may 
represent an unstable circular vortex sheet; the n > 0 modes 
are additionally marked by downstream shed vortices due to 6 
variations (probable self-induced motion causes rollup, which 
distorts the axisymmetric flow described, enhancing mixing). 

Calculated Results and Closing Remarks 

Our normalizations simplify the column relaxation. In 
airfoil theory, the speed </>„ normal to the "wake" or "branch 
cut" is continuous; the usual "<f>r" and "<£„•" forms are used 
with nonzero [</>]'s easily accounted in the differencing. For 
mixer and powered engine flows, the branch cut must be 
placed accurately and not arbitrarily, since it separates 
distinctly different flows. Differencing through this wake is 
subtle since </>f (x, R + , 6) ^ <j>\ (x, R-, 9). A potential 
"obviously" defined by 4> = <t>\, 4>\ for r 3 R and differenced 
using standard formulas would need to include a cumbersome 
and unknown velocity jump. But the choice 4>x = 4>\ (x, f, 9), 
r > R and <£,' (x, f, 8), r < R removes this difficulty: the 
usual formulas hold with only a potential jump subtracted 
out, i.e., 4>r. = (<f>J+i - <t>j-\ - [<M)/(0+i - O-i). the sIiP" 
streamslopes 4>{

e = <j>\ /Ue and 4>x'„ = 4>\ /U' having been 
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implicitly and correctly assumed continuous. This simplifies 
computations because airfoil codes apply with slight change. 

A box with streamwise and radial meshes Ax,- = 0.05, 1 < i 
< 81, and Ar, = 0.033, 1 < j < 61, was used, assuming a N 
= 4, n = 1 mixer with Be

ni{x) = 0 deg, 1 < i < 30 and 10 
deg, 31 < /' < 51, 51 being the trailing edge. Mean radii R, 
where tangency and Kutta conditions apply, were assumed at 
./'mixer = 21, 31, and 41; Rs was taken aty = 61 along 1 < i 
< 81. For each case, C1 = 0, but C2 ranged - 2 , 0, +2 . The 
"h potential" formulation, not purely Neumann, also 
requires he'' = 0 far upstream where 8 variations vanish. This 
is needed in calculating <j>e/r, which is proportional to h, and 
hence velocity slip. Converged results were obtained at 1000 
sweeps of the box. Figure 2 shows surface he,"s with C2 = 
- 2 , 0, +2 for each mixer. Again h measures <j>e/r, while hit 

weak here, measures streamwise speed. The dependence on C2 

is very slight, but that on "./mixer" is strong; also, he < 0, h' 
> 0, with he'' taking their largest values at the trailing edge 
exit plane. The jump h' —he, somewhat related to azimuthal 
velocity slip, decreases with increases inymixer. Also shown 
are exit plane hf's versus f. Proportional to the radial 
velocity, hf = 0 ony = 1 and at Rs; it has its maximum on the 
surface and is continuous in fas required (actual velocities are 
not, again, and some dependence on C2 is noted). Our limited 
results show that C2 is less important than R in producing 
flows with high azimuthal slip; mixer effectiveness, of course, 
also depends on Ue,'t R and Rs as they affect the shear layer. 
It may be that shed vorticity distribution is more significant if 
wake rollup controls an essentially inviscid process. These 
speculative ideas aim at stimulating discussion only; our work 
addresses mainly appropriate slipstream boundary con
ditions, numerical stability, and qualitative results. Extension 
of these results to realistic geometries and at high Mach 
numbers remains. 
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The Energy-Release Rate in the Growth of a 
One-Dimensional Delamination 

W.-L. Yin1 and J. T. S. Wang1 

Introduction 

The growth of a buckled delamination in a compressively 
loaded homogeneous plate has been studied by Kachanov [1] 
and Chai et al. [2] on the basis of a Griffith-type fracture 
criterion. The latter work was concerned with the growth of a 
one-dimensional delamination; the associated energy-release 
rate, G, was computed by evaluating the total potential energy 
of the plate and differentiating the result with respect to the 
variable length of delamination, /. The nature of the function 
G{[) determines the stability characteristics of delamination 
growth. In this Note, we use the /-integral method to obtain 
an algebraic expression of G in terms of the postbuckling 
solution of the delaminated plate. In three special cases, our 
formula reduces to previously known analytical expressions. 

Analysis 

Consider a homogeneous orthotropic plate of a linearly 
elastic material whose orthotropic axes coincide with the 
longitudinal, normal, and transverse directions of the plate 
(the x, y, z or xs, x2, x3 directions, respectively). The plate 
contains a one-dimensional delamination and is in a buckled 
stated under a sufficiently large axial load. In Fig. 1, we show 
a segment of the plate containing the delamination front 
(crack tip). A cross section of the plate ahead of the crack tip 
carries compressive axial force P , , shearing force Vt, and 
bending moment M ( , per unit width of the plate. Behind the 
crack tip, two cross-sections below and above the 
delamination carry loads P2, V2, M2, and P 3 , V3, Mit 

respectively. It is assumed that these forces and moments have 
already been determined from the postbuckling solution of 
the plate. Then the normal and shearing stresses across the 
three cross sections can be calculated on the basis of classical 
plate theory. Evaluation of the /-integral along the boundary 
curve of Fig. 1 yields the energy-release rate associated with 
the growth of delamination [3]. Since the portion of the strain 
energy due to the shearing force is generally small as com
pared to the bending energy or the energy of membrane 
compression, the effects of the shearing forces Vx, V2, and V3 

may be ignored. In the following analysis, we consider only 
the effects of the axial forces and bending moments. 

Equilibrium of the segment shown in Fig. 1 requires that 

P, =P2 +P3,M1 = M2 +M3 + P 3 H/2-P2 h/2, (1) 

where h is the thickness of the delaminated layer and t = H + 
h is the total thickness of the laminate. We decompose the 
system of loads in Fig. 1 into two subsystems: 

Mi = Mi' + M/', Pi =P,'+ P/', ( (=1,2 ,3) (2) 

where with the notation h = h/t, the first subsystem {P, ' , 
Mj'} is defined by 

P , ' =0, P2' = - P 3 ' =h[P1 +6(1 -h)Mi/t) -Pi, 

M , ' = 0 , M 2 ' =M2-Ml(\-h)\Mi'=M3-MlP (3) 

The second subsystem {P," and M," ) produces a non 
singular stress field near the delamination front: 

a x = - P , / ; - 1 2 M , . y / ? 3 , T ^ = 0 ( - / / 2 < . y < / / 2 ) . 

The mode / and mode 77 stress intensity factors associated 
with this subsystem of loading vanish. Consequently, the 
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implicitly and correctly assumed continuous. This simplifies 
computations because airfoil codes apply with slight change. 

A box with streamwise and radial meshes Ax,- = 0.05, 1 < i 
< 81, and Ar, = 0.033, 1 < j < 61, was used, assuming a N 
= 4, n = 1 mixer with Be

ni{x) = 0 deg, 1 < i < 30 and 10 
deg, 31 < /' < 51, 51 being the trailing edge. Mean radii R, 
where tangency and Kutta conditions apply, were assumed at 
./'mixer = 21, 31, and 41; Rs was taken aty = 61 along 1 < i 
< 81. For each case, C1 = 0, but C2 ranged - 2 , 0, +2 . The 
"h potential" formulation, not purely Neumann, also 
requires he'' = 0 far upstream where 8 variations vanish. This 
is needed in calculating <j>e/r, which is proportional to h, and 
hence velocity slip. Converged results were obtained at 1000 
sweeps of the box. Figure 2 shows surface he,"s with C2 = 
- 2 , 0, +2 for each mixer. Again h measures <j>e/r, while hit 

weak here, measures streamwise speed. The dependence on C2 

is very slight, but that on "./mixer" is strong; also, he < 0, h' 
> 0, with he'' taking their largest values at the trailing edge 
exit plane. The jump h' —he, somewhat related to azimuthal 
velocity slip, decreases with increases inymixer. Also shown 
are exit plane hf's versus f. Proportional to the radial 
velocity, hf = 0 ony = 1 and at Rs; it has its maximum on the 
surface and is continuous in fas required (actual velocities are 
not, again, and some dependence on C2 is noted). Our limited 
results show that C2 is less important than R in producing 
flows with high azimuthal slip; mixer effectiveness, of course, 
also depends on Ue,'t R and Rs as they affect the shear layer. 
It may be that shed vorticity distribution is more significant if 
wake rollup controls an essentially inviscid process. These 
speculative ideas aim at stimulating discussion only; our work 
addresses mainly appropriate slipstream boundary con
ditions, numerical stability, and qualitative results. Extension 
of these results to realistic geometries and at high Mach 
numbers remains. 
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The growth of a buckled delamination in a compressively 
loaded homogeneous plate has been studied by Kachanov [1] 
and Chai et al. [2] on the basis of a Griffith-type fracture 
criterion. The latter work was concerned with the growth of a 
one-dimensional delamination; the associated energy-release 
rate, G, was computed by evaluating the total potential energy 
of the plate and differentiating the result with respect to the 
variable length of delamination, /. The nature of the function 
G{[) determines the stability characteristics of delamination 
growth. In this Note, we use the /-integral method to obtain 
an algebraic expression of G in terms of the postbuckling 
solution of the delaminated plate. In three special cases, our 
formula reduces to previously known analytical expressions. 

Analysis 

Consider a homogeneous orthotropic plate of a linearly 
elastic material whose orthotropic axes coincide with the 
longitudinal, normal, and transverse directions of the plate 
(the x, y, z or xs, x2, x3 directions, respectively). The plate 
contains a one-dimensional delamination and is in a buckled 
stated under a sufficiently large axial load. In Fig. 1, we show 
a segment of the plate containing the delamination front 
(crack tip). A cross section of the plate ahead of the crack tip 
carries compressive axial force P , , shearing force Vt, and 
bending moment M ( , per unit width of the plate. Behind the 
crack tip, two cross-sections below and above the 
delamination carry loads P2, V2, M2, and P 3 , V3, Mit 

respectively. It is assumed that these forces and moments have 
already been determined from the postbuckling solution of 
the plate. Then the normal and shearing stresses across the 
three cross sections can be calculated on the basis of classical 
plate theory. Evaluation of the /-integral along the boundary 
curve of Fig. 1 yields the energy-release rate associated with 
the growth of delamination [3]. Since the portion of the strain 
energy due to the shearing force is generally small as com
pared to the bending energy or the energy of membrane 
compression, the effects of the shearing forces Vx, V2, and V3 

may be ignored. In the following analysis, we consider only 
the effects of the axial forces and bending moments. 

Equilibrium of the segment shown in Fig. 1 requires that 

P, =P2 +P3,M1 = M2 +M3 + P 3 H/2-P2 h/2, (1) 

where h is the thickness of the delaminated layer and t = H + 
h is the total thickness of the laminate. We decompose the 
system of loads in Fig. 1 into two subsystems: 

Mi = Mi' + M/', Pi =P,'+ P/', ( (=1,2 ,3) (2) 

where with the notation h = h/t, the first subsystem {P, ' , 
Mj'} is defined by 

P , ' =0, P2' = - P 3 ' =h[P1 +6(1 -h)Mi/t) -Pi, 

M , ' = 0 , M 2 ' =M2-Ml(\-h)\Mi'=M3-MlP (3) 

The second subsystem {P," and M," ) produces a non 
singular stress field near the delamination front: 

a x = - P , / ; - 1 2 M , . y / ? 3 , T ^ = 0 ( - / / 2 < . y < / / 2 ) . 

The mode / and mode 77 stress intensity factors associated 
with this subsystem of loading vanish. Consequently, the 
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Fig.1 

stress intensity factors and the energy release rates associated 
with the total loading system are the same as those associated 
with the first subsystem of loading. 

The subsystem of loading given by equation (3) leaves the 
undelaminated portion in Fig. 1 free from axial force and 
bending moment. Under this loading, the two .cross-sections 
on the left side carry equal and opposite axial forces 

P* = h{Px + 6(1 -h)M x / t ) -P3 (4) 

The bending moments in the two layers are given, respec
tively, by 

M*=M,-M,h3 (5) 
and M2' = P*t/2 - M* = M2 - Mx(\ -h)\ as shown in 
Fig. 2. Hence the first subsystem of loading contains only two 
independent load parameters P* and M*. The stress intensity 
factors and the energy release rates are functions of these two 
load parameters. 

The stresses in the cross section of the thinner delaminated 
layer produced by the tensile load P* and bending moment 
M* are 

ax=P*/h-\2M*-r\/hl.oy «rxy~0(-h/2<v<h/2). (6) 

where -q is the normal coordinate measured from the midplane 
of this layer. In Fig. 2, the cross section of the laminate ahead 
of the delamination front is subjected to vanishing stress and 
strain. In the region behind the delamination front, we have ez 

= 0. It follows that 

: "13ox,ex = {ax - vn az)/Ex = (1 - y3l vn)ax/Ex (7) 

where Ex, vn, and vn stand for the appropriate elastic moduli 
of the orthotropic material. Hence the following expression 
holds along a vertical path across the thinner delaminated 
layer: 

dJ = (l/2)a,y tjjdy-aijrfj(dUj/dx)ds 

= (l/2)(ax ex + az tz)dy + axex ds = {\/2)(axtx - oztz) ds 

l-"i3"3i (P* 12M*r,\^ 

= -2Er\~h~~i?~r^-h/2*1,*hn)-
The contribution to the /-integral from this layer is 

1 " l3"l3 ,,„*sl I dJ= 
I - A / 2 2Exh 

l(P*Y + l2(.M*/h)). 

Similarly, the thicker delaminated layer contributes the 
following term to the /-integral 

• H/2 
dt= 1~"1 3 ' '3 1 

H/2 2E{ f«->-(™)1-
The sum of the last two integrals delivers the energy-release 
rate since the remaining portions of the path make no con
tribution to the /-integral: 

l - " l 3 "3i f «P*)2 12(M*)2 WP*/2-M*)2) 

2Elt
i Ud-A) a* (i-tiy y 

Here P* and M* are defined by equations (4) and (5) in terms 
of the axial forces and bending mements shown in Fig. 1. 

Fig. 2 

Thin Film, Thick Column, and Symmetric Split Models 

If the moment Mx produces negligible bending of the 
laminate, then the laminate has a small curvature compared to 
the delaminated layer and the maximum bending strain in the 
laminate is negligible compared to the membrane strain. 
Consequently. 

M , r 3 < < M 3 / i - 3 , 6 M , / / z < < ? | / ( . 

Under these conditions equations (4) and (5) reduce, 
respectively, to 

P* = hPl-P3, M*=M3. (9) 

Since the two ends of the thin delaminated layer remain 
horizontal after buckling, the Euler buckling load of the layer 
i sP 3 = Pcr = Exh ecr where 

ir2 ( h \ 2 

e,f = — : ( — . (10) 3(1 "13 "31) 

Let/? = £'1/!3/{12(l-!'13 y31)] denote the bending stiffness 
per unit width of the layer. Then the transverse deflection and 
the bending moment of the buckled layer are given by 

wn / 2-KX\ Dw0 /2ir\2 2irx 
w ( *) = y ( l + c o s — J , M ( x ) = - - ^ y J cos — , 

(-w"sl)- (11) 

Here the amplitude vv0 depends on the average compressive 
strain e0 in the laminate. The amplitude may be determined by 
observing that the curve length of the buckled layer exceeds 
the projected length by an amount due to the difference of the 
compressive axial strain ecr in the buckled layer and the 
compressive strain e2 in the portion of the laminate beneath 
the layer: 

w0
2 =(1 - vl3vn)(2l/ir)2(e2 -ecr). 

In the present case, it is found that 

{\-h)i0+hhcr P 3 

1-h + hl ' Ext 
= her. (12o) 

and 

e2 = K 1 - "13 "31^(1 - 0) e0 " (1 " "13 "3i)W " OecA 

/(l-h + hf), (126) 

where / denotes the ratio of delamination length to the total 
length of the laminate. Now the bending moment M3 can be 
obtained by evaluating equation (126) at the end points. This 
yields 

KE^) = T i-k + tr ^ ( e o - e c r ) . (13) 

Substituting equations (12) and (13) into equations (9) and (8), 
we finally obtain 
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G= w-ii+W ( 1 - * ) f a - e '> 

[e0 + ecr[3+4-^-L]]. (14) 

This formula for G becomes identical to equation (29) of Chai 
et al. [2] when the orthotropic moduli are replaced by the 
corresponding moduli of an isotropic elastic material. In the 
limit h — 0. equation (14) immediately reduces to the 
following formula for a "thin film model": 

G = ( l -K 1 3e 3 1)£ | /Ke 0-e c r)(eo + 3ecr)/2. (15) 

Finally, for a ''symmetric split model" we have 

/ i = l / 2 , M 1 = 0 , . P * = 0 , M * = M 3 . 

Hence equation (8) reduces to 

G= (12(1 -puv3l)/Eh3)HM3)
2= (M3)2 /D. (16) 

This is familiar formula for the energy release rate of a 
symmetric double cantilever beam-plate. 
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Liapunov's Direct Method Applied to the 
Buckling of Rotating Beams 

D. C. Kammer1 and A. L. Schlack, Jr.2 

Introduction 

The buckling of rotating beams caused by compressive 
axial stresses due to centrifugal effects has interested several 
investigators [1-3] in the last 10 years. In their investigations 
the critical spin rate for buckling in the plane of rotating was 
found as a function of the parameter a, where a is the ratio of 
hoop radius to beam length. However, agreement is lacking in 
results presented in the literature for the critical spin rate. 

White, Kvaternik, and Kaza [1] cited convergence problems 
at high spin rates as the cause of the discrepancies and 
therefore resorted to an exact numerical integration technique 
to avoid the problem. The method put forth in this paper 
utilizes Liapunov's direct method to derive conditions that are 
sufficient for stability in the plane of rotation in terms of the 
parameters of the system. Liapunov's method provides a 
significant advantage in that the conditions for stability can 
be obtained without explicitly solving the equations of 
motion. 
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BRIEF NOTES 

Theoretical Formulations 

The configuration investigated in this Brief Note consists of 
a uniform Euler beam clamped to the inside of a rigid hoop (a 
partial spoke, for example) which is assumed to spin at a 
constant rate a>. If the end of the beam x = L is assumed to be 
free from stress, the axial load is given by 

P(x) = \/2m a2[(L2-x2)-2La(L-x)] (1) 

where a is the ratio of hoop radius R to beam length L and m 
is the mass per unit length. For cv > 1/2, compressive stresses 
exist within the beam. 

Vibrations in the plane of rotation are governed by the 
equation [1] 

m[-v,„ + w2v] + [Pv,x],x - [EIzv,xx],xx = 0. (2) 

According to Theorem 6.9.4, page 247 of reference [4], the 
stability of the system can be determined by testing the 
positive definiteness of the dynamic potential function [5] U' 
= V — T0, where V is the potential energy and T0 is that 
portion of the kinetic energy that is a function of 
displacement. The form of the function U' is given by 

U' = \/2ElA v,x
2dx+\/l\ [Pv,x

2-mu2v2]dx. (3) 

An appropriate modal expansion [6] is assumed for the 
inplane displacement v of the form 

v=£v,il (4) 
/ = i 

where <£, are either admissible or comparison functions. 
When the preceding expansion is substituted into the dynamic 
potential, the function U' can be represented to within a 
certain order of accuracy by the quadratic form 

1/2 £ £ U' U,<?, = \/2[q\ T[H]e[g) (5) 
; = i ; = i 

where [H]e is the associated Hessian matrix evaluated at the 
equilibrium position. Terms within the Hessian matrix are of 
the form 

H>J=EIz\Q^hxX^j^xxdX 

+ j o [P ^hx^j,x-m^2i^j]dx. (6) 

The positive-definiteness of the Liapunov function U' may 
then be determined by applying Sylvester's Theorem to the 
Hessian matrix. The result is a set of necessary and sufficient 
conditions for the quadratic form to be positive-definite. The 
conditions are that all the principal minor determinants 
corresponding to the symmetric Hessian matrix be positive. 

In the present investigation [7], it was found that for this 
class of problem the determinant of the Hessian matrix being 
positive is a necessary and sufficient condition for all the 
principal minor determinants to be positive. Therefore, the 
system will be stable if the determinant of the Hessian matrix, 
evaluated at the equilibrium position, is positive [8]. 

The equation of the curve that separates the regions of 
stability and instability is derived by setting the determinant 
of the Hessian matrix equal to zero. This results in an «th-
order polynomial equation in the square of the critical spin 
rate parameter of the form 

A Vc+B\"c-
l+. . .C\c+D = 0 (7) 

where Xc = mo)2L4/EI. 
The coefficients A, B, etc. are functions of the parameter a. 

Therefore, equation (7) can be solved for n roots Xc, as 
functions of a. The derived root X„ represents the square of 
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G= w-ii+W ( 1 - * ) f a - e '> 

[e0 + ecr[3+4-^-L]]. (14) 

This formula for G becomes identical to equation (29) of Chai 
et al. [2] when the orthotropic moduli are replaced by the 
corresponding moduli of an isotropic elastic material. In the 
limit h — 0. equation (14) immediately reduces to the 
following formula for a "thin film model": 

G = ( l -K 1 3e 3 1)£ | /Ke 0-e c r)(eo + 3ecr)/2. (15) 

Finally, for a ''symmetric split model" we have 

/ i = l / 2 , M 1 = 0 , . P * = 0 , M * = M 3 . 

Hence equation (8) reduces to 

G= (12(1 -puv3l)/Eh3)HM3)
2= (M3)2 /D. (16) 

This is familiar formula for the energy release rate of a 
symmetric double cantilever beam-plate. 
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Liapunov's Direct Method Applied to the 
Buckling of Rotating Beams 
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Introduction 

The buckling of rotating beams caused by compressive 
axial stresses due to centrifugal effects has interested several 
investigators [1-3] in the last 10 years. In their investigations 
the critical spin rate for buckling in the plane of rotating was 
found as a function of the parameter a, where a is the ratio of 
hoop radius to beam length. However, agreement is lacking in 
results presented in the literature for the critical spin rate. 

White, Kvaternik, and Kaza [1] cited convergence problems 
at high spin rates as the cause of the discrepancies and 
therefore resorted to an exact numerical integration technique 
to avoid the problem. The method put forth in this paper 
utilizes Liapunov's direct method to derive conditions that are 
sufficient for stability in the plane of rotation in terms of the 
parameters of the system. Liapunov's method provides a 
significant advantage in that the conditions for stability can 
be obtained without explicitly solving the equations of 
motion. 
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partial spoke, for example) which is assumed to spin at a 
constant rate a>. If the end of the beam x = L is assumed to be 
free from stress, the axial load is given by 

P(x) = \/2m a2[(L2-x2)-2La(L-x)] (1) 

where a is the ratio of hoop radius R to beam length L and m 
is the mass per unit length. For cv > 1/2, compressive stresses 
exist within the beam. 

Vibrations in the plane of rotation are governed by the 
equation [1] 

m[-v,„ + w2v] + [Pv,x],x - [EIzv,xx],xx = 0. (2) 

According to Theorem 6.9.4, page 247 of reference [4], the 
stability of the system can be determined by testing the 
positive definiteness of the dynamic potential function [5] U' 
= V — T0, where V is the potential energy and T0 is that 
portion of the kinetic energy that is a function of 
displacement. The form of the function U' is given by 

U' = \/2ElA v,x
2dx+\/l\ [Pv,x

2-mu2v2]dx. (3) 

An appropriate modal expansion [6] is assumed for the 
inplane displacement v of the form 

v=£v,il (4) 
/ = i 

where <£, are either admissible or comparison functions. 
When the preceding expansion is substituted into the dynamic 
potential, the function U' can be represented to within a 
certain order of accuracy by the quadratic form 
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where [H]e is the associated Hessian matrix evaluated at the 
equilibrium position. Terms within the Hessian matrix are of 
the form 

H>J=EIz\Q^hxX^j^xxdX 

+ j o [P ^hx^j,x-m^2i^j]dx. (6) 

The positive-definiteness of the Liapunov function U' may 
then be determined by applying Sylvester's Theorem to the 
Hessian matrix. The result is a set of necessary and sufficient 
conditions for the quadratic form to be positive-definite. The 
conditions are that all the principal minor determinants 
corresponding to the symmetric Hessian matrix be positive. 

In the present investigation [7], it was found that for this 
class of problem the determinant of the Hessian matrix being 
positive is a necessary and sufficient condition for all the 
principal minor determinants to be positive. Therefore, the 
system will be stable if the determinant of the Hessian matrix, 
evaluated at the equilibrium position, is positive [8]. 

The equation of the curve that separates the regions of 
stability and instability is derived by setting the determinant 
of the Hessian matrix equal to zero. This results in an «th-
order polynomial equation in the square of the critical spin 
rate parameter of the form 

A Vc+B\"c-
l+. . .C\c+D = 0 (7) 

where Xc = mo)2L4/EI. 
The coefficients A, B, etc. are functions of the parameter a. 

Therefore, equation (7) can be solved for n roots Xc, as 
functions of a. The derived root X„ represents the square of 
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the ratio a = R/L was determined, below which the beam 
cannot buckle for a finite spin rate. 

Admissible functions were used to show that the derived 
solution converges to the solution found in the literature. The 
success of the present method of solution in predicting the 
correct relation between the critical spin rate parameter X'cl 
and the radius-to-length ratio a has demonstrated that 
recourse need not be made to the solution of the equations of 
motion to solve the stability problem. Liapunov's direct 
method provides an efficient method for determining stability 
boundaries for this class of problems. It is also readily 
adaptable to systems with nonuniform physical properties and 
geometries and different boundary conditions. 

0 4 8 12 
E-1 a = R/L 

Fig. 1 Inplane buckling of mode one 

the spin rate parameter required to buckle a particular mode 
[9]. When Xd > 0, the mode represented by Xd can buckle at a 
finite spin rate. If Xc, < 0, the mode cannot buckle for the 
corresponding value of a. Separating the preceding two cases 
is the requirement of an infinite spin rate necessary to buckle 
the particular mode. This situation occurs when a takes on the 
critical value aci corresponding to the z'th mode. The critical 
value is a zero of the leading coefficient A in equation (7). 

Numerical Results 
The theory set forth is applied to the uniform cantilevered 

beam described in the foregoing. Results are presented for the 
case of inplane buckling using admissible functions in ex
pansion (4) of the form *, = xi+l. These functions satisfy the 
geometric boundary conditions of zero deflection and slope at 
the root of the beam. 

A one-term approximation results in the following relation 
between X'c and a: 
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Material Frame-Indifference in Turbulence 
Modeling 

C. G. Speziale1 

where X'c = Xc
,/2. 

Equation (8) gives the critical spin rate required to buckle the 
beam inplane as a function of a. The critical value of a at 
which an infinite spin rate is required for buckling is given by 
acl = 0.2. 

For a two-term approximation, equation (7) will be a 
second-order polynomial possessing two roots, one for each 
mode. The critical value of a corresponding to the first mode 
has been reduced to acl = 0.094 by the addition of a second 
term in the assumed displacement expansion. Adding a third 
term introduces a third buckled state and further reduces the 
value of acl to 0.055. 

The one, two, and three-term approximations to the 
buckling curve for the first mode (along with the curve 
derived by White, et al.) are plotted in the X'c, a plane for 
fixed beam length L and variable radius R in Fig. 1. Through 
the first three approximations, the value of acl has 
monotonically converged toward the value widely accepted in 
the literature for the inplane case, acl = 0.0. This trend 
continues as still more terms are added to the assumed 
deflection expression [7]. 

In a recent paper, Lumley [1] addressed an all too often 
neglected feature of turbulence modeling: the in variance of 
the closure relations. In fact, before the work of Donaldson, 
et al. [2], there was a considerable amount of turbulence 
modeling that did not satisfy even rudimentary invariance 
requirements under a change of coordinates (such invariance 
is, of course, guaranteed by simply writing all equations in 
tensor form). Lumley [1] asserts that the principle of material 
frame-indifference, which would require that the closure 
relations that tie the Reynolds stress tensor to the mean 
velocity field be form invariant under a change of frame, is 
unequivocally not applicable to turbulent flows and criticizes 
the arguments made in Speziale [3, 4]. However, several 
subsequent articles [5, 6] have been published on this subject 
which strongly indicate that material frame-indifference is 
applicable to turbulence modeling in, at least, a limiting sense. 
The purpose of this paper is to present this alternative 
position in more detail. 

In Speziale [3, 4] no objection to the method of moments 
was raised (moment equations are a rigorous consequence of 

Conclusion 

Buckling criteria have been derived as a function of system 
parameters for a radially mounted beam spinning at a con
stant rate using Liapunov's direct method. A critical value of 
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corresponding value of a. Separating the preceding two cases 
is the requirement of an infinite spin rate necessary to buckle 
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beam described in the foregoing. Results are presented for the 
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Equation (8) gives the critical spin rate required to buckle the 
beam inplane as a function of a. The critical value of a at 
which an infinite spin rate is required for buckling is given by 
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For a two-term approximation, equation (7) will be a 
second-order polynomial possessing two roots, one for each 
mode. The critical value of a corresponding to the first mode 
has been reduced to acl = 0.094 by the addition of a second 
term in the assumed displacement expansion. Adding a third 
term introduces a third buckled state and further reduces the 
value of acl to 0.055. 

The one, two, and three-term approximations to the 
buckling curve for the first mode (along with the curve 
derived by White, et al.) are plotted in the X'c, a plane for 
fixed beam length L and variable radius R in Fig. 1. Through 
the first three approximations, the value of acl has 
monotonically converged toward the value widely accepted in 
the literature for the inplane case, acl = 0.0. This trend 
continues as still more terms are added to the assumed 
deflection expression [7]. 

In a recent paper, Lumley [1] addressed an all too often 
neglected feature of turbulence modeling: the in variance of 
the closure relations. In fact, before the work of Donaldson, 
et al. [2], there was a considerable amount of turbulence 
modeling that did not satisfy even rudimentary invariance 
requirements under a change of coordinates (such invariance 
is, of course, guaranteed by simply writing all equations in 
tensor form). Lumley [1] asserts that the principle of material 
frame-indifference, which would require that the closure 
relations that tie the Reynolds stress tensor to the mean 
velocity field be form invariant under a change of frame, is 
unequivocally not applicable to turbulent flows and criticizes 
the arguments made in Speziale [3, 4]. However, several 
subsequent articles [5, 6] have been published on this subject 
which strongly indicate that material frame-indifference is 
applicable to turbulence modeling in, at least, a limiting sense. 
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BRIEF NOTES 

the Navier-Stokes equations). The issue addressed in [3] is 
whether or not a Reynolds stress closure of sufficient 
generality can be achieved by truncating the infinite hierarchy 
of moment equations at the second moment and basing 
closure solely on this equation. It was argued that the 
disparity in the invariance properties between the Reynolds 
stress tensor, which is frame-independent, and the transport 
equation for the Reynolds stress tensor, which is not, casts 
serious doubts on the potential generality of such closures 
(especially since there exists a subset of the hierarchy of 
moment equations that are frame-independent [3]). While this 
argument was somewhat speculative when published, recent 
work on the limiting case of two-dimensional turbulence 
supports this position [5, 6]. Although two-dimensional 
turbulence is, strictly speaking, a pseudoturbulence, it does 
constitute a real approximation to turbulence in the upper 
atmosphere (or in any rapidly rotating framework sufficiently 
far from solid boundaries) and has thus been of interest to 
geophysicists. In Speziale [5, 6] it was proven, as a rigorous 
consequence of the Navier-Stokes equations, that the 
Reynolds stress tensor in a two-dimensional turbulence must 
satisfy the principle of material frame-indifference. This 
results from the fact that for a two-dimensional turbulence 
the fluctuating vorticity transport equation in an arbitrary 
noninertial frame of reference takes the invariant form [5] 

—- + v « V £ = - u - Vd>-U'V£ + u ,V£ + eV2£ (1) 
at 

where £ is the fluctuating vorticity, d> is the mean vorticity, u 
is the fluctuating velocity, v is the mean velocity, and v is the 
kinematic viscosity of the fluid. As a direct consequence of 
(1), the evolution of a velocity fluctuation will be unaffected 
by the state of rotation of the mean velocity v and, hence, 
material frame-indifference will rigorously apply. However, 
in such a turbulence, the Reynolds stress transport equation is 
still frame-dependent [6] (it contains Coriolis terms), and, 
hence, it is clear that the invariance properties of this equation 
do not have a direct bearing on the issue of material frame-
indifference. 

To obtain a second-order closure that is consistent with the 
Navier-Stokes equations in two dimensions it is necessary to 
alter the transformation properties of the Reynolds stress 
transport equation during the course of the modeling [6]. 
There are direct and irrevocable consequences of such an 
occurrence. To be specific, when a modeled equation has 
different transformation properties than the original equation 
on which it is based, it can be concluded that this model will 
only apply to a restricted class of processes that are not closed 
with respect to this group of transformations [7]. In physical 
terms, this means that if a second-order closure model applies 
to a particular turbulent flow it will not, in general, apply to 
the same turbulent flow when it is subjected to an arbitrary 
rigid body rotation unless there is an ad hoc modification of 
the empirical constants [6]. 

In Speziale [3] it was proven that the fluctuating velocity u 
based on an ensemble mean is a frame-indifferent vector, i.e., 
it transforms as 

u* =u 
under arbitrary time-dependent rotations and translations of 
the spatial frame of reference and, hence, is independent of 
the observer. In physical terms, this means that two different 
observers whose motions differ by an arbitrary rigid body 
motion would measure the same fluctuating velocity field for 
a given turbulent flow. Of course, this would not be true of all 
tensors that enter in the turbulent field equations. For in
stance, the mean spin tensor « given by 

. _ 1 / dvk dv, \ 
akl-2\-d^~~d^) (2) 

(where v is the mean velocity) is certainly a tensor but it is not 
a frame-indifferent one. Under a change of frame, equation 
(2) transforms as 

Ci* = co + dual fi (3) 
and is thus not invariant [3] (here, dual Si is the antisymmetric 
tensor formed from the angular velocity fi of the framing). 
Furthermore, it should be noted that it is possible to construct 
fluctuating velocities u that are not independent of the ob
server. For instance, we can decompose the velocity vector v 
into a mean and fluctuating part, respectively, 

v = v + u (4) 
where the mean velocity constitutes a variable interval time 
average [8, 9] given by 

v(x,0= — ( G(t'-tMx,t')dt' (5) 

GU - ' K o , \f-t\>T 
Here, T is some time period, which is usually quite large 
compared with the time scale of the turbulent fluctuations. It 
is a simple matter to show that for this case, u transforms as 

u* = u + [ 4 i - » G('' -0O(t'W -0(/)]xx (6) 
under a time-dependent rotation of the framing and, hence, 
the fluctuating velocity based on a variable interval time 
average is frame-dependent unlike that which is constructed 
from an ensemble mean. However, both fluctuating velocities 
are tensors! It is extremely important to distinguish ordinary 
tensors from frame-indifferent tensors since such information 
can have a crucial impact on the allowable form of models. 

Since the fluctuating velocity based on an ensemble mean is 
a frame-indifferent vector, it follows that the corresponding 
Reynolds stress tensor is a frame-indifferent tensor [3]. It is 
true that this does not automatically mean that the Reynolds 
stress tensor must satisfy the principle of material frame-
indifference since it is possible for the relationship between 
frame-indifferent tensors to be frame-dependent (some of the 
statements made in Speziale [3] are too strong in this regard). 
However, it is incorrect to argue that since the Navier-Stokes 
equations are frame-dependent, this necessarily means that 
material frame-indifference cannot be applied to turbulence 
modeling. The Reynolds stress tensor that is modeled 
represents a special solution of the Navier-Stokes equations: it 
is the mean of the outer product of the fluctuating velocity 
with itself under the conditions that certain stochastic 
requirements be met and that there only be a limited 
dependence on initial and boundary conditions. It is a well-
established fact that special solutions of an equation can have 
a larger invariance group than general solutions [10]. The case 
of two-dimensional turbulence (where material frame-
indifference is a rigorous consequence of the Navier-Stokes 
equations) illustrates this phenomenon and, furthermore, 
provides a scenario for how material frame-indifference could 
follow from the Navier-Stokes equations, in an approximate 
sense, for three-dimensional turbulence sufficiently far from 
solid boundaries. For such flows, at moderate to rapid 
rotation rates, the large eddies of turbulence tend to align 
themselves with the axis of rotation (this is a consequence of 
the Taylor-Proudman theorem [11]) and thus become two-
dimensional for which material frame-indifference rigorously 
applies. Furthermore, inertial effects on the small scales of 
turbulence in such a case are much less pronounced and they 
have been successfully modeled in the large-eddy simulations 
by using the Smagorinsky model, which is frame-indifferent 
[12]. 

Turbulence in a rotating frame is certainly quite different 
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than turbulence in an inertial frame of reference. The critical 
issue, however, is whether or not this difference in turbulence 
structure arises from inertial effects on the mean velocity 
history described by the mean momentum equation or from 
the failure of material frame-indifference (material frame-
indifference, of course, does not say that if an experiment is 
subjected to a rigid body rotation the motion will be left 
unchanged). Although it is possible, in principle, to test the 
validity of material frame-indifference by experiment, such 
an experiment would be quite difficult to carry out. To 
directly establish the failure of material frame-indifference in 
the laboratory it is necessary to produce the same mean 
velocity history in an inertial frame of reference and in an 
arbitrary noninertial frame of reference and show by 
measurement that the values of the Reynolds stresses are 
different in the two cases. A nonconservative body force field 
would, in general, have to be applied to suppress inertial 
effects on the mean velocity. Considering these difficulties, it 
is clear why to the best of my knowledge there exist no 
published experimental papers that bear conclusively on the 
issue of material frame-indifference (reference [13] cited in 
Lumley [1] actually constitutes a "numerical experiment"). 

The applicability of material frame-indifference to general 
turbulent flows remains an open question which will only be 
resolved by rigorous mathematical or experimental proof. 
However, it is interesting to note that the two most popular 
turbulent closure models within the general areas of Reynolds 
stress modeling and subgrid scale stress modeling (large-eddy 
simulations) satisfy material frame-indifference identically. 
To be more specific, the widely used k-e or k — I model of 
turbulence is frame-indifferent and so is the Smagorinsky 
model which is used to model the small scales of turbulence 
in the large-eddy simulations. While these models do have 
serious limitations, in my opinion, there is no conclusive 
evidence to support the contention that these limitations arise 
from their frame-indifferent properties. Furthermore, unlike 
these models, the commonly used frame-dependent, second-
order closure models [14, 15] are inconsistent with the Navier-
Stokes equations in the limit of two-dimensional turbulence. 
As a direct consequence of the Taylor-Proudman theorem, 
this limit is approached by any turbulence in a rapidly rotating 
framework (i.e., for 0/0 > > 1 where t0 is the time scale of the 
turbulent fluctuations) that is sufficiently far from solid 
boundaries. It is a simple matter to show that, for such a 
turbulence, the second-order closure models of Lumley [14] 
and Launder, et al. [15] reduce to the equation 

«3cA np+e3llk TKa=0 (7) 

where e is the permutation tensor, T is the Reynolds stress 
tensor, and all Greek indices take on the range of values 1, 2 

which correspond to the xx, x2-coordinates that are per
pendicular to the axis of rotation. Equation (7) is obtained by 
taking the limit as 0— oo of the modeled Reynolds stress 
transport equation [14, 15] in a rotating frame (only the 
Coriolis terms survive; c.f. [6]). It is clear that equation (7) 
has the unique solution 

Til = T 2 2 , T 1 2 = 0 (8) 

which would thus require a state of isotropy for any such two-
dimensional turbulence. This, of course, is not consistent with 
the Navier-Stokes equations in two-dimensions for which the 
state of rotation of the fluid has no effect on the evolution of 
a velocity fluctuation [6] and, thus, cannot place any con
straints on the Reynolds stress tensor (let alone require it to be 
isotropic). Since the limiting case of two-dimensional tur
bulence must satisfy material frame-indifference, such frame-
dependent, second-order closure models [14, 15] that are not 
invariant in the two-dimensional limit are much more likely to 
incorporate spurious physics in the description of rotating 
flows than the more simple frame-indifferent models. 
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Nonlinear Bending and Collapse of Long, 
Thin, Open Section Beams and Corrugated 
Panels1 

F. A. Emmerling.2 The basic assumptions in this work raise 
some doubts. In particular, the longitudinal stress is assumed 
"proportional to the vertical distance from the neutral axis" 
and the bending moment is found "from the classical beam-
equilibrium equation Mz = EZIK" where the area moment of 
inertia lis calculated for deformed section. But redistribution 
of longitudinal stress in the cross section constitutes the main 
effect of the initial curvature. This has been known since the 
linear analysis of Th. V. Karman [1]. (But the work is clearly 
intended to encompass initially curved beams.) This fact has 
been confirmed in the nonlinear theory of tubes and open-
section beams (initially straight or curved). Regrettably, most 
of the relevant literature has been overlooked. The review 
paper by E. L. Axelrad mentioned by the author refers to 
work [23, 35, 37, 39] treating the problems in question. There 
are also more recent publications [2]. 
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Author's Closure 

Professor Emmerling raises a valid point about the effect of 
initial curvature on the form of the longitudinal moment-
curvature relationship, and I will try to address the issue as 
best I can in this short space. The neglected terms give rise to 
two manifestations of error: one associated with the cross 
section as a whole, and another associated with the defor-

By R. C. Benson, and published in the March, 1984 issue of the JOURNAL OF 
APPLIED MECHANICS, Vol. 51, pp. 141-145. 

2 Professor, Dr.-Ing., Hochschule der Bundeswehr Munchen. 

mation of the cross section. Compared to terms retained, the 
former effect is of order of magnitude y ( K + «0), and the latter 
is of the order of magnitude (Aj>Kg)/(y~K). Herej^, K, and K0 are 
as defined (dimensionally) in the paper under discussion, and 
Ay is the displacement of the neutral axis from its original 
location. In the limit as K and Ay approach zero, the first 
effect is the source of greater possible error, and as K and Ay 
become larger, the second effect is of greater importance. 
Neither of these would I label as the "main effect of the initial 
curvature." That I would reserve for the importance of K0 in 
the equation p — (K0 + K)N, which relates the longitudinal 
load, N, to the distorting load of the cross section, p. 

Nevertheless, the neglected effects can be important if K0 is 
too great, and some strictures are needed to judge the ap
propriateness of the model. I had supposed that when 
classical beam theory was invoked, the reader would take, as 
one of the implications, that the depth of the cross section was 
very much smaller that the radius of curvature of the bend 
(i.e., that y « K0 + K). Such would directly address the first 
source of error described in the foregoing, and is important 
whether or not K0 = 0. Since the second source of error is tied 
to the deformation of the cross section, the test for its 
significance (i.e., the ratio given previously) must be made 
a posteriori. Of course, if KQ is identically zero then the ratio 
will also be identically zero. In retrospect, I see that it would 
have been helpful to have incorporated the elements of this 
Discussion in the original paper. I thank Prof. Emmerling and 
the Journal for providing the present opportunity for 
discussion. 

On the subject of "relevant literature," there is no reason 
to assume that because a particular article was unused it was 
"overlooked." As clearly stated in the paper, the primary 
purpose was to put forth a versatile solution scheme that was 
not tied to a particular cross-sectional geometry. The point of 
comparison to Ash well [7], Rimrott [9], and Mech [10] was to 
demonstrate the ability to regenerate trusted and in
dependently obtained results. Other sources could well have 
been used, including some of the German and Russian articles 
that Prof. Emmerling cites. My purposes being otherwise 
served, I chose not to. This in no way casts aspersions on these 
other fine papers or makes my selection "regrettable." The 
reader seeking additional publications was well served by the 
reference to Axelrad [11]—the one entry on the reference list 
without substitute. 
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Mathematical Foundations of Elasticity. By Jerrold E. 
Marsden and Thomas J. R. Hughes. Prentice-Hall, 
Englewood Cliffs, N. J., 1983. 556 Pages. Price $42.95. 

REVIEWED BY D. E. CARLSON1 

The preface begins with the following statement: "This 
book treats parts of the mathematical foundations of three-
dimensional elasticity using modern differential geometry and 
functional analysis. It is intended for mathematicians, 
engineers, and physicists who wish to see this classical subject 
in a modern setting and to see some examples of what newer 
mathematical tools have to contribute." Given these worthy 
intentions and the scientific stature of the authors, the book 
must be taken in earnest by every serious student of elasticity. 

The book begins with a preliminary chapter that provides a 
brief and informal survey of some standard topics in elasticity 
from a classical point of view. The text proper then redoes 
these topics in modern terms. Chapter 1 is devoted to the 
geometry and kinematics of bodies. It starts conventionally 
with bodies as open sets in three-dimensional Euclidean space 
and builds up to a description in terms of manifolds. Chapter 
2 is on the general balance laws and inequalities of continuum 
thermomechanics. Chapter 3 gives a fairly general treatment 
of constitutive theory with special attention paid to elasticity 
and thermoelasticity. Chapter 4 provides a modern approach 
to linearization including a general discussion of linearization 
stability. Chapter 5 develops and applies the theory of 
Hamiltonian systems to elasticity. In Chapter 6 functional 
analysis is used to address such questions as existence, 
uniqueness, and stability. Chapter 7 introduces bifurcation 
theory and considers applications to both elastostatics and 
elastodynamics. 

The book is aimed at the beginning graduate level. A good 
background in advanced calculus and a willingness to work 
are the prerequisites. The reader is helped considerably by the 
authors' device of using boxes to summarize important 
formulas in both abstract and component notation and to 
isolate optional material such as the consequences of the 
invariance of energy balance under superposed rigid motion. 
Guides throughout the text indicate how various notions will 
be used later and what the reader needs to review before 
proceeding. The many references to the literature are also 
useful. 

It is refreshing to sense that while the authors take their 
difficult subject very seriously they do not take themselves too 

Professor, Department of Theoretical and Applied Mechanics, University 
of Illinois, Urbana, 111. 61801. 

seriously. In an amusing disclaimer early in the preface the 
reader is warned that Kirchhoff has two h's in it. This 
amusement is heightened by the discovery that often in the 
text von Karman is spelled as von Karmen. 

Do the authors succeed? Recall that the book is intended 
for mathematicians, engineers, and physicists who wish to see 
elasticity in a modern setting and to see what kinds of results 
newer mathematical tools have to contribute. The power of 
the newer methods comes through clearly; for example, as 
early as Chapter 1 the thorny old subject of objective rates is 
disposed of once and for all through use of the Lie derivative. 
Mathematicians who are trained in modern geometry will find 
the book to be a valuable introduction to continuum 
mechanics. Physicists who are trained in general relativity will 
be pleased to see that the concept of covariance permeates the 
development. Engineers will probably have the most difficult 
time with the book, which really is for those who wish to see 
elasticity in a modern setting. Those who wish this enough to 
work at it will find this to be a very worthwhile book. 

Theory of Shell Structures. By C. R. Calladine. Cambridge 
University Press, New York, 1983. 763 Pages. Price $135.00. 

REVIEWED BY J. L. SANDERS, JR.2 

This is an unusual book on shells. The work begins with a 
chapter that is philosophical in tone rather than the more 
conventional brief introduction to differential geometry. 
Nowhere in the book is there any version of the system of 
equations according to what is generally called the first ap
proximation theory of thin shells. The book is tutorial in 
nature. The dominant theme is to develop a thorough un
derstanding of the behavior of shell structures. The author 
goes about this by drawing on the readers' presumed un
derstanding of simpler structures such as beams on an elastic 
foundation, flat plates, or pin-jointed trusses. Some really 
difficult problems are successfully handled by idealizing the 
structure to the point where the problem can be solved by 
relatively simple mathematics without losing essential features 
or losing too much accuracy in the numerical results. There 
are several chapters (particularly the one on cylindrical shell 
roofs) with a definite design orientation. The mathematical 
methods employed include simple boundary layer theory (but 
not singular perturbation theory), Fourier series (but not 

Professor, Division of Applied Sciences, Harvard University, Cambridge, 
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Fourier integrals), variational methods, and the like. On those 
occasions when further development of a topic is beyond the 
limits of such an approach the author furnishes appropriate 
references to the literature. The author has a "pet" concept 
which he pushes in what I would regard as an inoffensive 
manner, namely his two-surface model of a shell. There is an 
" S " (for stretching) surface and a "B" (for bending) surface 
with appropriate distributions of certain internal loads 
required to ensure that they deform together. The reader can 
take this or leave it; I happen to leave it. This is definitely an 
engineer's book on the subject, but one that those with a very 
mathematical view of structural mechanics could well read 
with profit. 

A wide variety of topics is included. Throughout the text 
there is ample discussion of the practical implications of the 
results. The historical background of a problem is oc
casionally given, and there are numerous references to the 
literature. The list of topics is more or less as follows: the 
membrane theory, its advantages and limitations; analysis of 
cylindrical shells, the influence of length, boundary con
ditions, and type of loading; the analysis and design of 
cylindrical shell roofs, including the effects of edge beams; 
pressure vessels and junction problems, i.e., torispherical 
heads, etc.; flexibility of axially symmetric bellows, mostly by 
energy methods; curved tubes and pipe bends including the 
effects of reinforcing rings; buckling of cylindrical shells 
under various loadings and with various boundary conditions 
by the classical bifurcation analysis including the effect of 
stiffening elements; post-buckling analysis and imperfection 
sensitivity, the Brazier effect in the buckling of bent tubes; 
vibrations of cylindrical shells; plastic analysis, generalized 
yield surfaces, plastic collapse, upper and lower bound 
methods applied to limit analysis of pressure vessels. 

Nonlinear Oscillations Dynamical Systems, and Bifurcations 
of Vector Fields. By John Guckenheimer and Philip Holmes. 
Springer-Verlag, New York, 1983. 453 Pages. 

REVIEWED BY M. SLEMROD3 

In recent years there has been a growing trend in the 
sciences and engineering to apply the powerful tools of the 
geometric theory of differential equations. Early examples 
were the adaption of the direct method of Liapunov in 
nonlinear stability analysis and the use of bifurcation theory 
to study the branching of solutions. More recently the 
realization that rather simple-looking, finite-dimensional 
deterministic systems may behave in a "chaotic" randomlike 
fashion has caused new interest among some physicists, 
biiologists, and engineers as to the implications of this aspect 
of geometric theory in their respective disciplines. The goal of 
the book of Guckenheimer and Holmes is in the authors' 
words to provide "a user's guide to the rapidly growing field 
of knowledge" in dynamical systems theory in general and 
chaos in particular. 

In specific terms the book serves two roles. First it gives the 
reader (depending on his or her sophistication) either an 
introduction or review of the main features of the qualitative 
theory of differential equations. This is accomplished in 
Chapter 1 and to a lesser extent in Chapter 3. 

My belief is that if one feels uncomfortable with this in
troductory material: linear systems theory, invariant 
manifolds, Poincare maps, etc., then this book will be tough-
going since everything builds on the tools introduced at the 
beginning. Let us assume the reader does either the necessary 
groundwork to master these introductory concepts or knew 

3 Professor, Department of Mathematical Sciences, Rensselaer Polytechnic 
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them already. Then we are ready to get down to business. 
Chapter 2 presents four striking and simple examples that 
exhibit chaos and their behavior is studied (partially with the 
aid of computer simulations). Specifically the examples are 
the forced van der Pol and Duffing equations, the Lorenz 
equations, and the equations governing the dynamics of 
bouncing ball. Chapter 3 stresses bifurcation theory and 
provides an introduction to the important role of the center 
manifold theorem in nonlinear stability theory. Chapter 4 
introduces the MePnilcov method which (1) is actually 
capable of proving "chaos" and (2) (in my opinion) can be 
mastered by many potential appliers. Chapter 5 discusses 
strange attractors and the geometric theory of the Lorenz 
attractor. In my view this material is a quantum jump harder 
than the preceding chapter. Nonetheless the material is ac
cessible. Finally, the book concludes with Chapters 6 and 7 on 
global bifurcations and local codimension two bifurcations of 
flows. 

As I have noted to some degree earlier, I view the book as 
"pyramiding." We build up knowledge from chapter to 
chapter and apply it to problems in nonlinear oscillations as 
we go along. It does give a seemingly complex and diverse set 
of ideas a beautiful unity. Furthermore as I have also men
tioned earlier the motivated reader willing to work can master 
the ideas and tools presented here. In summary this is a well-
written, first-rate book by two first-rate researchers. I 
recommend it enthusiastically. 

Fracture Mechanics of Ceramics: Volume 5 Surface Flaws, 
Statistics, and Microcracking, and Volume 6 Measurements, 
Transformations, and High-Temperature Fracture. Edited by 
R. C. Bradt, A. G. Evans, D. P. H. Hasselman, and F. F. 
Lange. Plenum Press, New York, 1983. 692 and 674 Pages. 
Price $89.50 and $89.50. 

REVIEWED BY J. W. HUTCHINSON4 

These two volumes contain a total of 78 papers that were 
presented at an international symposium on fracture of 
ceramics held at The Pennsylvania State University in July, 
1981. The volumes represent much more than the usual 
collection of symposium papers. For one thing, the field of 
fracture mechanics of ceramics is at an exciting stage with 
several new developments holding out promise for tougher 
ceramics, and the books reflect this. The leading contributors 
to the field have papers in the volumes. While the volumes 
focus on the fracture of ceramics, they are otherwise quite 
comprehensive in their coverage. Most of the contributions 
are research papers, with a healthy mix of theory, experiment, 
and materials design, but there are also well-written survey 
papers on a variety of topics including indentation mechanics, 
statistical aspects of design with ceramics, testing techniques, 
and toughening mechanisms. A partial listing of some of the 
other topics dealt with includes: dynamic fracture, surface 
flaws, multiple crack interactions, microcrack toughening 
mechanisms, porous and cellular ceramics, compressive 
fracture, phase transformation toughening, microstructural 
design, i?-curve behavior, high-temperature fracture, thermal 
shock resistance, crack healing, and subcritical crack growth. 
The volumes are obviously relevant to materials scientists, 
particularly to ceramicists, but there is also a high content of 
interesting mechanics here. Some of it is in a fairly 
rudimentary state, which makes it all the more interesting. 

4 Professor, Division of Applied Sciences, Harvard University, Cambridge, 
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Theoretical Glaciology. By Kolumban Hutter. D. Reidel, 
Mass., 1983. 510 Pages. Price $104.00 

REVIEWED BY T. J. HUGHES5 

This is a most impressive book. Most shortcomings cited in 
this review reflect on Hutter's decision to limit the scope of his 
study, not the study itself, which is extremely thorough and 
well presented. His writing is lucid despite the fact that 
English is not has native tongue. 

The book is organized into seven chapters. Chapter one 
presents the fundamentals of continuum mechanics, with 
detailed treatments of the balance equations, the response of 
the material to environmental conditions, an application of 
the entropy principle to stress and temperature fields, and 
phase changes as one important material response. Chapter 
two examines several constitutive equations as they relate to 
the mechanical properties imposed by the hexagonal sym
metry of ice single-crystals, the isotropic symmetry of ran
domly oriented polycrystalline ice, and phase transformations 
that involve brine in sea ice. These considerations constitute 
Part I of the book, which unites continuum mechanics and 
materials science in a framework within which glaciers can be 
studied. 

Part II provides numerous glaciological applications of the 
principles developed in Part I. Chapter three gives the basic 
practical application; the flow of ice masses under the force of 
gravity, masses that range from small valley glaciers to 
continental ice sheets. Two-dimensional flow is examined in 
terms of stress and temperature field equations, and the stress 
and thermal boundary conditions that prevail when the bed 
and surface slopes are nearly identical. Chapter four examines 
the velocity field of these slabs as a consequence of tem
perature-stress feedback. It begins by stating the basic 
boundary-value problem, reduces it to linear form, and then 
provides solutions of zero and first-order, with numerical 
results for steady-state solutions and an examination of 
surface waves on glaciers. These chapters present what might 
be called classical glaciology. 

The remainder of Part II concentrates on new develop
ments, many by Hutter himself. Chapter five treats cases 
where the surface and bed slopes are substantially unequal; 
what Hutter calls the shallow-ice approximation. The basal 
shear stress formulation is modified for this situation, and 
steady-state solutions are presented for ice flow and surface 
profiles that result from variable bed topography. Ice divides 
of ice sheets are examined and an appendix examines higher-
order stress solutions in the shallow-ice approximation. 
Chapter six analyzes the response of valley glaciers and 
continental ice sheets to seasonal and climatic change, in
cluding the motion of kinematic waves and other surface 
waves on glaciers. Chapter seven concludes the book by 
expanding the two-dimensional treatments for ice sheets to 
three dimensions, and by focusing on the effect of varying 
cross sections of valley glaciers. Variational principles are 
introduced to treat local phenomena such as ice falls and 
calving ice cliffs. Some finite-element solutions to these 
problems are examined. 

The book has hundreds of equations and a corresponding 
number of mathematical errors. Although these errors do not 
seem to invalidate the mathematical treatments, the reader 
should carefully work through every derivation before ap
plying the final equations. 

Professor, Department of Geological Sciences, University of Maine, 
Orono, ME 04469 

Mechanical Behavior of Anisotropic Solids. Edited by Jean-
Paul Boehler. Martinus Nijhoff, The Hague, 1982. 927 Pages. 
Price $120.00. 

REVIEWED BY Y. F. DAFALIAS6 

This volume contains the 54 invited contributions of 84 
authors from 15 different countries to an international 
colloquium organized by J. P. Boehler and A. Sawczuk at 
Villard de-Lans, France, in June 1979. In the 927 pages of the 
handsomely printed volume the reader can find almost every 
aspect of anisotropy not only as it pertains to the mechanical 
behavior of solids, but also to a number of nonmechanical 
properties. The overall trend is the identification, 
measurements, and analytical modeling of anisotropic 
properties at various scales and from different perspectives, 
rather than the solution to problems where anisotropy plays a 
role (although a few contributions address the latter). 

The volume is organized into 12 sessions, some of which are 
preceded by one of the five general lectures presented. The 
title and a brief description of the content of each session is 
given in the following 

Session 1: Invariant Formulation of Constitutive Equations 
This session contains six communications and one general 

lecture entitled, "The Formulation of Constitutive Equations 
for Anisotropic Solids," written by A. J. M. Spencer. The 
general content is the mathematical theory of invariant 
representations for quantities of different tensorial orders 
associated with elastic, plastic, creep, and fracture processes, 
with the emphasis placed on the mathematical aspects. 

Session 2: Physical Propertis of Anisotropic Materials 
The session contains six communications focusing on 

physical properties and their implicit use for characterizing 
anisotropic mechanical properties. Magnetic anisotropy for 
metals, electrical conductivity anisotropy for saturated 
granular media, structural modeling of pseudo-elastic bodies, 
anisotropy in liquid crystals, thermoelasticity in conjunction 
with electrical measurements, and birefringence in finitely 
deformed materials are the particular topics. 

Session 3: Changes of Macroscopic Anisotropy in Metals 
Following the general lecture entitled "Experimental 

Plasticity on the Anisotropy of Metals," written by K. 
Ikegami with an extensive bibliography, four communications 
are presented of both a theoretical and experimental nature on 
the macroscopic description of the response of metals with 
initial or induced anisotropy. 

Session 4: Anisotropy of Metallic Poly crystals 

The emphasis of the general lecture, "Relations entre 
Textures et Comportement Mecanique Anisotrope des 
Metaux," by P. Parniere and two of the three com
munications that follow it are on the description and relation 
between microscopic mechanicms and macroscopic 
anisotropic response of polycrystalline metals, supported by 
analytical development and experimental observations of a 
metallurgical nature. The third communication is a 
theoretical and experimental study of plastic wave 
propagation under combined stresses and nonproportional 
loading paths. 

Session 5: Analytical and Numerical Methods for the 
Determination of Mechanical Properties of Composites 

The general lecture, "Mechanical Properties of Corn-
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posites," by G. J. Dvorak, as well as its three following 
contributions concentrate on the determination of 
macroscopic, anisotropic mechanical properties of 
heterogeneous media from the properties of their con
stituents, with emphasis on elasticity, plasticity, and 
viscoelasticity of fiber-reinforced or layered composites. 

Session 6: Strength of Composites 
The three contributions of this section address specifically 

the problems of composite strength, either from the point of 
view of a failure surface or the delamination failure mode, 
supplementing the theory with experimental data. 

Session 7: Mechanics of Anisotropic Rocks 
The comprehensive general lecture, "anisotropic 

Mecanique des Roches," is written by P. M. Sirieys. The 
emphasis of the lecture and its following three com
munications is on the anisotropy of rock masses. In addition 
to the general considerations, features particularly important 
for rocks, such as the response of joints and the thermically 
induced anisotropic fissuration, are examined. 

Session 8: Anisotropy of Consolidated Clays and of 
Materials With Internal Friction 

The four contributions address the question of the effect of 
initial or induced by consolidation anisotropy on the 
mechanical response of pressure-sensitive materials with 
emphasis on clays and sands. Failure and yield criteria for 
such media are presented. 

Session 9: Vibrations, Waves' Propagation, and Induced 
Anisotropy 

The common feature of the give contributions is the effect 
(and detection) of anisotropy on the propagation of waves. 
Different kinds of waves are treated, such as magnetic, 
acoustic, electroacoustic, etc., for different materials and 
from both theoretical and experimental points of view. 

Session 10: Damage and Creep 
Two of the four communications focus on the development 

of anisotropic internal damage and its macroscopic effect on 
elastic and viscoplastic properties of metals. The other two 
concentrate on creep characteristics of eutectic composite and 
polycrystalline glass. 

Session 11: Experimental Investigations and Interpretation 
of Mechanical Tests 

While emphasizing experimental aspects supported by 
proper theoretical development the five contributions present 
a plethora of experimental data indicating the mechanical 
effect of anisotropy on diverse materials such as perforated 
plates, rocks, clays, epoxy/carbon, and graphite/epoxy. 

Session 12: Problems of Civil Engineering 
The three communications of the last session present 

problems associated with the effect of mechanical anisotropy 
on the loading of large-scale structures, such as rock mass and 
oil shale, with methods of analysis ranging from the practical 
to the theoretical. 

It is clear from the foregoing synopsis of the contents that 
the volume is addressed to the specialist not only on 
anisotropy in general, but also on different subjects of 
mechanical behavior. The English-speaking reader should 
also consider the fact that 15 of the 54 contributions are 
written in French. Nevertheless, we believe that this volume is 
extremely useful for the serious researcher on anisotropy, and 
the diversity of the subjects in many respects helps in in

tegrating the general concept. It must also be mentioned that 
this volume is followed by two others in press (corresponding 
colloquia in 1981 and 1983) with emphasis on more specific 
aspects of anisotropy. 

The long period that elapsed from the time of the first 
colloquium (1979) to the publication of the present volume 
(1982) is compensated for by the excellent appearance and 
quality of the volume as well as the uniformity of the 
presentations, much of which should be attributed to the 
effort of the editor in preparing the guidelines for the authors 
and in carefully reviewing the proofs. 

An Introduction to Continuum Mechanics. By M. E. Gurtin. 
Academic Press, New York, 1981. 265 Pages. Price $34.50. 

REVIEWED BY W. J. DRUGAN1 

For students, practitioners, and researchers in the many 
areas of solid and fluid mechanics that are of importance 
today, a clear, precise understanding of the fundamental 
principles of continuum mechanics is indispensible. Professor 
Gurtin's book is an exemplary source for such an un
derstanding: it is lucid, concise, and rigorous. 

As befits the "Mathematics in Science and Engineering" 
series of which this book is a volume, the presentation is fairly 
mathematical: the reader's minimal background should in
clude finite-dimensional vector spaces and advanced calculus 
from a mathematical (as opposed to pure applications) 
perspective so that the book's terminology and methods of 
proof are familiar. The benefits of requiring this level of 
mathematical literacy are that crucial concepts can be stated 
and proved rigorously, and that a number of elegant modern 
results and perspectives can be accurately conveyed. I found 
these to be among the book's most attractive features: every 
important result is clearly stated (as a theorem or proposition) 
together with all necessary assumptions, and every result is 
either proved or accompanied by a reference to a proof. Thus, 
a number of important concepts that are taken for granted in 
many texts on the subject are explicitly stated and proved 
here; this philosophy should be particularly valuable to 
students new to continuum mechanics. 

The striking conciseness of the book enables the reader to 
acquire a clear broad perspective on the subject and its 
principal concepts; Professor Gurtin has evidently worked 
hard to effect a lucid, direct approach. Students may find the 
book difficult in places due to this terseness, but I feel the 
extra effort required will be well rewarded. 

Regarding the specific content, the book begins with two 
chapters on tensor algebra and analysis, which are notable for 
the development of a very general notion of differentiation 
applicable to tensor functions of arbitrary rank, and for 
simple, clear interpretations of such concepts as divergence 
and curl. These chapters (the entire book, for that matter) 
employ direct—as opposed to component—notation ex
clusively. Many concepts and results do provide more insight 
when viewed in direct notation, but I feel that students of 
continuum mechanics should also be exposed to index 
notation, as it often provides the simplest approach for proofs 
and manipulations of tensor quantities. 

Chapters 3-5 deal with the fundamental topics of 
kinematics, mass, momentum, and force. The introduction to 
deformations and the discussions and interpretations of finite 
strain and rate of deformation tensors are among the clearest 
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and cleanest I have seen. A nice feature of these sections is the 
demonstration of how these deformation quantities relate to 
length changes of arbitrary material curves. I do wish proofs 
of the theorems for converting volume and surface integrals 
from current to reference configurations were provided rather 
than referenced, as these results are extremely important and 
are employed repeatedly throughout the text. In the chapter 
on force, I was surprised to see the assumption that the 
traction vector (stress vector) is a smooth function of position 
in the body, introduced even before the statement of the 
integral forms of the momentum balance laws. This deprives 
the reader of an appreciation of the full generality of these 
laws (e.g., they permit the existence of stress discontinuities), 
and fosters the limiting notion that they are equivalent to the 
differential forms of momentum balance. Indeed, this 
equivalence is proved in the text via the smooth traction 
assumption, which is misleadingly referred to as a "property 
of force systems." 

The discussion of constitutive equations and some complete 
theories for describing the behavior of certain material classes 
comprises the remainder of the book. This discussion is very 
nicely developed. It begins with the basic example of inviscid 
fluids in Chapter 6, followed by a general analysis in Chapter 
7 of changes of observer and the axiom of observer in
dependence of material response. This general formulation is 
then applied in Chapter 8 to derive constitutive equations for 
Newtonian fluids, and in Chapter 9 to derive constitutive 
equations for elastic materials at finite strain. Chapter 10 
shows how a systematic linearization of finite elasticity theory 
results in the classical theory of linear elasticity. Thus these 
chapters provide rigorous derivations of the governing 
equations for the classical theories of ideal, compressible and 
viscous fluids, and linear and nonlinear elasticity, while giving 
a very interesting brief tour of some important specific results 
in these theories. Also notable is the inclusion of uniqueness 
and stability theorems for the Navier-Stokes equations, 
together with careful proofs which illustrate some nice 
mathematics; uniqueness theorems for linear elastostatics and 
elastodynamics; and valuable comparisons between the linear 
and finite elasticity theories, such as differences in the 
requirements for existence of solutions, and a comparison of 
solutions for the problem of simple shear. I would like to have 
seen at least brief sections on a few other important theories 
of material behavior that currently receive much attention in 
research and in practice, such as plasticity and viscoelasticity. 

One section that could be improved is a confusing 
definition and discussion of hyperelastic materials, giving a 
relation between the Piola-Kirchhoff stress tensor and the 
derivative of strain energy density which is inconsistent with 
earlier definitions of derivative and tensor. There are also a 
few cases of undefined notation. Otherwise, I found the book 
to be remarkably free of errors (except for very few trivial 
misprints), for which both the author and publisher are to be 
highly commended. 

Additional features of the book include: two appendices, a 
brief one on the exponential function (of a tensor), and a 
detailed one on isotropic functions; a substantial set of hints 
for some of the exercises which appear in the text; and a 
valuable list of modern references on continuum mechanics 
and related mathematics. 

This book is a major contribution to the modern continuum 
mechanics literature by one of the subject's best expositors. 
The minor constructive criticisms noted in the foregoing 
should not obscure this fact. 

Elastic Wave Propagation in Transversely Isotropic Media. 
By Robert G. Payton. Martinus Nijhoff, The Netherlands, 
1983. 192 pages. Price $42.50. 

REVIEWED BY J. G. HARRIS8 

This book describes the propagation of elastic waves in 
transversely isotropic media. In particular, transient wave 
motion problems are solved in two dimensions (plane strain) 
and three dimensions for both the full space and the half 
space. The emphasis is placed on finding explicit represen
tations for the displacement fields. Asymptotic or numerical 
solutions are not considered and no effort is made to consider 
experimental aspects of the subject. This book will interest 
mainly those who are interested both in anisotropic wave 
propagation and in the mathematical techniques used to 
investigate such wave motion. 

Chapters 1 and 2 provide essential background information 
for the rest of the book. Chapter 1, in addition to introducing 
the equations of linear elasticity, describes the constraints on 
the elastic constants necessary for wave motion and describes 
the uncoupled equations of motion. Chapter 2 provides the 
reader with the first real insight into why anisotropic wave 
motion is interesting. This chapter discusses the nature of the 
normal (slowness) curve and the wave front curve. The 
uninitiated reader might first want to read the book by 
Musgrave listed among the references or that by Auld [1], 
Though it is unfortunate that in Figs. 16-26 the normal curve 
and the wave front curve do not appear on the same page, the 
discussion of these two curves is handled very well. 

Chapter 3, which is the most important chapter, is con
cerned with calculating the two-dimensional (plane strain) and 
the three-dimensional Green's tensor for the displacement 
field in a full space using integral transforms. In the two-
dimensional case the expressions for the displacement field 
are reduced to a sum of residues. To make further progress 
the author must consider points of observation along the 
symmetry axis or points near the wave fronts. The reviewer 
was surprised to learn of the presence of lacunas, in two 
dimensions, which move with time, and was particularly 
interested in the wave front approximations near their 
cuspidal points. In the three-dimensional case explicit ex
pressions for the displacements are calculated for arbitrary 
observation points subject to a restriction on the elastic 
constants, and for observation points along the symmetry axis 
without any restriction on the elastic constants. Closing the 
chapter, a formula (the Herglotz-Petrowski formula) ex
pressing the displacement field as an integral over the entire 
slowness surface is derived and used to examine briefly the 
displacement behavior near the wave fronts. 

Chapters 4 and 5 are concerned with the excitation of the 
transversely isotropic half space where the axis of symmetry is 
perpendicular to the traction-free surface. In Chapter 4 the 
displacement of the surface of a two-dimensional half space, 
excited by a point load applied at the surface, is calculated. In 
Chapter 5 the displacement of the epicenter of a three-
dimensional half space, excited by a buried point force, is 
calculated. The Betti-Rayleigh reciprocal theorem is then used 
to calculate the epicentral-axis motion caused by a point force 
applied at the surface. Chapter 5 closes with a very brief 
discussion of the body force equivalents to internal discon
tinuities in an anisotropic solid. 

The reviewer found no serious misprints; the proofreading, 
which is quite important in a book like this, has been careful 
and thorough. While he is not aware of all the literature in this 
field, the reviewer believes that this book contains the most 
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and cleanest I have seen. A nice feature of these sections is the 
demonstration of how these deformation quantities relate to 
length changes of arbitrary material curves. I do wish proofs 
of the theorems for converting volume and surface integrals 
from current to reference configurations were provided rather 
than referenced, as these results are extremely important and 
are employed repeatedly throughout the text. In the chapter 
on force, I was surprised to see the assumption that the 
traction vector (stress vector) is a smooth function of position 
in the body, introduced even before the statement of the 
integral forms of the momentum balance laws. This deprives 
the reader of an appreciation of the full generality of these 
laws (e.g., they permit the existence of stress discontinuities), 
and fosters the limiting notion that they are equivalent to the 
differential forms of momentum balance. Indeed, this 
equivalence is proved in the text via the smooth traction 
assumption, which is misleadingly referred to as a "property 
of force systems." 

The discussion of constitutive equations and some complete 
theories for describing the behavior of certain material classes 
comprises the remainder of the book. This discussion is very 
nicely developed. It begins with the basic example of inviscid 
fluids in Chapter 6, followed by a general analysis in Chapter 
7 of changes of observer and the axiom of observer in
dependence of material response. This general formulation is 
then applied in Chapter 8 to derive constitutive equations for 
Newtonian fluids, and in Chapter 9 to derive constitutive 
equations for elastic materials at finite strain. Chapter 10 
shows how a systematic linearization of finite elasticity theory 
results in the classical theory of linear elasticity. Thus these 
chapters provide rigorous derivations of the governing 
equations for the classical theories of ideal, compressible and 
viscous fluids, and linear and nonlinear elasticity, while giving 
a very interesting brief tour of some important specific results 
in these theories. Also notable is the inclusion of uniqueness 
and stability theorems for the Navier-Stokes equations, 
together with careful proofs which illustrate some nice 
mathematics; uniqueness theorems for linear elastostatics and 
elastodynamics; and valuable comparisons between the linear 
and finite elasticity theories, such as differences in the 
requirements for existence of solutions, and a comparison of 
solutions for the problem of simple shear. I would like to have 
seen at least brief sections on a few other important theories 
of material behavior that currently receive much attention in 
research and in practice, such as plasticity and viscoelasticity. 

One section that could be improved is a confusing 
definition and discussion of hyperelastic materials, giving a 
relation between the Piola-Kirchhoff stress tensor and the 
derivative of strain energy density which is inconsistent with 
earlier definitions of derivative and tensor. There are also a 
few cases of undefined notation. Otherwise, I found the book 
to be remarkably free of errors (except for very few trivial 
misprints), for which both the author and publisher are to be 
highly commended. 

Additional features of the book include: two appendices, a 
brief one on the exponential function (of a tensor), and a 
detailed one on isotropic functions; a substantial set of hints 
for some of the exercises which appear in the text; and a 
valuable list of modern references on continuum mechanics 
and related mathematics. 

This book is a major contribution to the modern continuum 
mechanics literature by one of the subject's best expositors. 
The minor constructive criticisms noted in the foregoing 
should not obscure this fact. 

Elastic Wave Propagation in Transversely Isotropic Media. 
By Robert G. Payton. Martinus Nijhoff, The Netherlands, 
1983. 192 pages. Price $42.50. 

REVIEWED BY J. G. HARRIS8 

This book describes the propagation of elastic waves in 
transversely isotropic media. In particular, transient wave 
motion problems are solved in two dimensions (plane strain) 
and three dimensions for both the full space and the half 
space. The emphasis is placed on finding explicit represen
tations for the displacement fields. Asymptotic or numerical 
solutions are not considered and no effort is made to consider 
experimental aspects of the subject. This book will interest 
mainly those who are interested both in anisotropic wave 
propagation and in the mathematical techniques used to 
investigate such wave motion. 

Chapters 1 and 2 provide essential background information 
for the rest of the book. Chapter 1, in addition to introducing 
the equations of linear elasticity, describes the constraints on 
the elastic constants necessary for wave motion and describes 
the uncoupled equations of motion. Chapter 2 provides the 
reader with the first real insight into why anisotropic wave 
motion is interesting. This chapter discusses the nature of the 
normal (slowness) curve and the wave front curve. The 
uninitiated reader might first want to read the book by 
Musgrave listed among the references or that by Auld [1], 
Though it is unfortunate that in Figs. 16-26 the normal curve 
and the wave front curve do not appear on the same page, the 
discussion of these two curves is handled very well. 

Chapter 3, which is the most important chapter, is con
cerned with calculating the two-dimensional (plane strain) and 
the three-dimensional Green's tensor for the displacement 
field in a full space using integral transforms. In the two-
dimensional case the expressions for the displacement field 
are reduced to a sum of residues. To make further progress 
the author must consider points of observation along the 
symmetry axis or points near the wave fronts. The reviewer 
was surprised to learn of the presence of lacunas, in two 
dimensions, which move with time, and was particularly 
interested in the wave front approximations near their 
cuspidal points. In the three-dimensional case explicit ex
pressions for the displacements are calculated for arbitrary 
observation points subject to a restriction on the elastic 
constants, and for observation points along the symmetry axis 
without any restriction on the elastic constants. Closing the 
chapter, a formula (the Herglotz-Petrowski formula) ex
pressing the displacement field as an integral over the entire 
slowness surface is derived and used to examine briefly the 
displacement behavior near the wave fronts. 

Chapters 4 and 5 are concerned with the excitation of the 
transversely isotropic half space where the axis of symmetry is 
perpendicular to the traction-free surface. In Chapter 4 the 
displacement of the surface of a two-dimensional half space, 
excited by a point load applied at the surface, is calculated. In 
Chapter 5 the displacement of the epicenter of a three-
dimensional half space, excited by a buried point force, is 
calculated. The Betti-Rayleigh reciprocal theorem is then used 
to calculate the epicentral-axis motion caused by a point force 
applied at the surface. Chapter 5 closes with a very brief 
discussion of the body force equivalents to internal discon
tinuities in an anisotropic solid. 

The reviewer found no serious misprints; the proofreading, 
which is quite important in a book like this, has been careful 
and thorough. While he is not aware of all the literature in this 
field, the reviewer believes that this book contains the most 
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systematic treatment of boundary value problems in 
anisotropic elastodynamics that is available. Moreover, he 
admires the patience and hard work that has gone into this 
study. 

References 

1 Auld, B. A., Acoustic Fields and Waves in Solids, Vol. 1, Wiley, New 
York, 1973. 

Mechanics of Material Behavior, The Daniel C. Drucker 
Anniversary Volume. Edited by George J. Dvorak and 
Richard T. Shield. Elsevier, The Netherlands, 1984. 383 
Pages. Price $94.25. 

REVIEWED BY L. B. FREUND9 

This book is a collection of papers that were included in a 

Professor, Division of Engineering, Brown University, Providence, R.I. 
02912. Fellow, ASME. 

The Wiley Engineer's Desk Reference. By Sanford I. Heisler. 
John Wiley & Sons, New York, 1984. 567 Pages. Price 
$34.95. 

Seismic Mountings for Vibration Isolation. By Joseph A. 
Macinante. John Wiley & Sons, New York, 1984. 279 Pages. 
Price $39.95. 

Schalentheorie (in German). By E. Axelrad. B. G. Teubner, 
Stuttgart, 1983. 211 Pages. Price? 

Proceedings of the 6th World Congress on the Theory and 
Machines and Mechanisms, Vol. I and II. John Wiley & Sons, 
New York, 1984. (Vol. I, 692 Pages, Price $69.95, Vol. II, 728 
Pages, Price $69.95.) December 15-20, 1983, New Delhi, 
India). 

Incompressible Flow. By Ronald L. Panton. John Wiley & 
Sons, New York, 1984. 780 Pages. Price $44.95. 

Rock Fracture Mechanics. Edited by H. P. Rossmanith. 
Springer-Verlag, New York, 1983. 484 Pages. Price $34.00. 

Introduction to Linear Elasticity. By Phillip L. Gould, 
Springer-Verlag, New York, 1983. 159 Pages. Price $22.00. 

Limit Analysis and Concrete Plasticity. By M. P. Nielsen. 
Prentice-Hall, Englewood Cliffs, N.J., 1984. 420 Pages. Price 
$42.95. 

Convection in Liquids. By J. K. Platten and J. C. Legros. 
Springer-Verlag, New York, 1984. 679 Pages. Price $74.00. 

Problems of Mixed Mode Crack Propagation. By Emmanuel 
E. Gdoutos. Martinus Nijhoff, The Netherlands, 1984. 204 
Pages. Price $53.00. 

Symposium on the Mechanics of Material Behavior which was 
held at the University of Illinois in Urbana in June of 1983. 
The main purpose of the Symposium was to recognize the 
technical contributions made by Daniel C. Drucker to the 
field of mechanics of material behavior on the occasion of his 
65th birthday. The volume includes a summary of Drucker's 
professional activities and achievements to date (including 
mention of his service as Technical Editor of the JOURNAL OF 
APPLIED MECHANICS from 1956 to 1968), and a list of his 
technical publications. This is followed by complete texts of 
22 technical papers on metal plasticity, creep and 
viscoplasticity, structural dynamics, composite materials, soil 
mechanics, micromechanics, experimental mechanics, and 
elasticity. The esteem with which Drucker is held within the 
applied mechanics community is reflected in the number of 
contributions to the volume from colleagues who themselves 
are major contributors to the field, and the broad impact of 
Drucker's work is conveyed through the range of topics in
cluded in the Symposium. 

Numerical Simulation of Non-Newtonian Flow. By M. J. 
Crochet, A. R. Davies, and K. Walters. Elsevier, New York, 
1984. 352 Pages. Price $65.50. 

Buckling of Shells for Engineers. By L. Kollar and E. 
Dulacska. John Wiley & Sons, New York, 1984. 303 Pages. 
Price $49.95. 

Analysis and Simulation of Semiconductor Devices. By 
Siegfried Selberherr. Springer-Verlag, New York, 1984. 293 
Pages. Price $54.00. 

Measuring Techniques for Gas-Liquid Two-Phase Flows. 
Edited by J. M. Delhaye and G. Cognet. Springer-Verlag, 
New York, 1984. (IUTAM Symposium, Nancy, France, July 
5-8, 1983.) 746 Pages. Price $59.00. 

Rolling Bearing Analysis, 2nd Edition. By Tedric A. Harris, 
John Wiley & Sons, New York, 1984. 565 Pages. Price 
$74.95. 

Applied Fluid Dynamics Handbook. By Robert D. Blevins, 
Van Nostrand Reinhold, New York, 1984. 558 Pages. Price 
$49.50. 

Mechanical Properties, Performance, and Failure Modes of 
Coatings. Edited by T. Robert Shives and Marshall B. 
Peterson. Cambridge University Press, New York, 1984. 226 
Pages. Price $42.50. 

Primer on Composite Materials: Analysis. By J. C. Halpin. 
Technomic, Lancaster, Pa., 1984. 187 Pages. Price $25.00. 

Environmental Effects on Composite Materials. Edited by 
George S. Springer. Technomic, Lancaster, Pa., 1984. 438 
Pages. Price $55.00. 

BOOKS RECEIVED 
(June-September) 

Journal of Applied Mechanics DECEMBER 1984, Vol. 51 / 951 

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



BOOK REVIEWS 

systematic treatment of boundary value problems in 
anisotropic elastodynamics that is available. Moreover, he 
admires the patience and hard work that has gone into this 
study. 

References 

1 Auld, B. A., Acoustic Fields and Waves in Solids, Vol. 1, Wiley, New 
York, 1973. 

Mechanics of Material Behavior, The Daniel C. Drucker 
Anniversary Volume. Edited by George J. Dvorak and 
Richard T. Shield. Elsevier, The Netherlands, 1984. 383 
Pages. Price $94.25. 

REVIEWED BY L. B. FREUND9 

This book is a collection of papers that were included in a 

Professor, Division of Engineering, Brown University, Providence, R.I. 
02912. Fellow, ASME. 

The Wiley Engineer's Desk Reference. By Sanford I. Heisler. 
John Wiley & Sons, New York, 1984. 567 Pages. Price 
$34.95. 

Seismic Mountings for Vibration Isolation. By Joseph A. 
Macinante. John Wiley & Sons, New York, 1984. 279 Pages. 
Price $39.95. 

Schalentheorie (in German). By E. Axelrad. B. G. Teubner, 
Stuttgart, 1983. 211 Pages. Price? 

Proceedings of the 6th World Congress on the Theory and 
Machines and Mechanisms, Vol. I and II. John Wiley & Sons, 
New York, 1984. (Vol. I, 692 Pages, Price $69.95, Vol. II, 728 
Pages, Price $69.95.) December 15-20, 1983, New Delhi, 
India). 

Incompressible Flow. By Ronald L. Panton. John Wiley & 
Sons, New York, 1984. 780 Pages. Price $44.95. 

Rock Fracture Mechanics. Edited by H. P. Rossmanith. 
Springer-Verlag, New York, 1983. 484 Pages. Price $34.00. 

Introduction to Linear Elasticity. By Phillip L. Gould, 
Springer-Verlag, New York, 1983. 159 Pages. Price $22.00. 

Limit Analysis and Concrete Plasticity. By M. P. Nielsen. 
Prentice-Hall, Englewood Cliffs, N.J., 1984. 420 Pages. Price 
$42.95. 

Convection in Liquids. By J. K. Platten and J. C. Legros. 
Springer-Verlag, New York, 1984. 679 Pages. Price $74.00. 

Problems of Mixed Mode Crack Propagation. By Emmanuel 
E. Gdoutos. Martinus Nijhoff, The Netherlands, 1984. 204 
Pages. Price $53.00. 

Symposium on the Mechanics of Material Behavior which was 
held at the University of Illinois in Urbana in June of 1983. 
The main purpose of the Symposium was to recognize the 
technical contributions made by Daniel C. Drucker to the 
field of mechanics of material behavior on the occasion of his 
65th birthday. The volume includes a summary of Drucker's 
professional activities and achievements to date (including 
mention of his service as Technical Editor of the JOURNAL OF 
APPLIED MECHANICS from 1956 to 1968), and a list of his 
technical publications. This is followed by complete texts of 
22 technical papers on metal plasticity, creep and 
viscoplasticity, structural dynamics, composite materials, soil 
mechanics, micromechanics, experimental mechanics, and 
elasticity. The esteem with which Drucker is held within the 
applied mechanics community is reflected in the number of 
contributions to the volume from colleagues who themselves 
are major contributors to the field, and the broad impact of 
Drucker's work is conveyed through the range of topics in
cluded in the Symposium. 

Numerical Simulation of Non-Newtonian Flow. By M. J. 
Crochet, A. R. Davies, and K. Walters. Elsevier, New York, 
1984. 352 Pages. Price $65.50. 

Buckling of Shells for Engineers. By L. Kollar and E. 
Dulacska. John Wiley & Sons, New York, 1984. 303 Pages. 
Price $49.95. 

Analysis and Simulation of Semiconductor Devices. By 
Siegfried Selberherr. Springer-Verlag, New York, 1984. 293 
Pages. Price $54.00. 

Measuring Techniques for Gas-Liquid Two-Phase Flows. 
Edited by J. M. Delhaye and G. Cognet. Springer-Verlag, 
New York, 1984. (IUTAM Symposium, Nancy, France, July 
5-8, 1983.) 746 Pages. Price $59.00. 

Rolling Bearing Analysis, 2nd Edition. By Tedric A. Harris, 
John Wiley & Sons, New York, 1984. 565 Pages. Price 
$74.95. 

Applied Fluid Dynamics Handbook. By Robert D. Blevins, 
Van Nostrand Reinhold, New York, 1984. 558 Pages. Price 
$49.50. 

Mechanical Properties, Performance, and Failure Modes of 
Coatings. Edited by T. Robert Shives and Marshall B. 
Peterson. Cambridge University Press, New York, 1984. 226 
Pages. Price $42.50. 

Primer on Composite Materials: Analysis. By J. C. Halpin. 
Technomic, Lancaster, Pa., 1984. 187 Pages. Price $25.00. 

Environmental Effects on Composite Materials. Edited by 
George S. Springer. Technomic, Lancaster, Pa., 1984. 438 
Pages. Price $55.00. 

BOOKS RECEIVED 
(June-September) 

Journal of Applied Mechanics DECEMBER 1984, Vol. 51 / 951 
Copyright © 1984 by ASME

Downloaded 02 May 2010 to 171.66.16.25. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


